精英家教网 > 初中数学 > 题目详情
6.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.

分析 设巡逻船从出发到成功拦截所用时间为x小时,由题意得出∠ABC=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,由三角函数得出BD、AD的长度,得出CD=10x+6.在Rt△ACD中,由勾股定理得出方程,解方程即可.

解答 解:设巡逻船从出发到成功拦截所用时间为x小时;如图所示,
由题意得:∠ABC=45°+75°=120°,AB=12,BC=10x,AC=14x,
过点A作AD⊥CB的延长线于点D,
在Rt△ABD中,AB=12,∠ABD=45°+(90°-75°)=60°,
∴BD=AB•cos60°=$\frac{1}{2}$AB=6,AD=AB•sin60°=6$\sqrt{3}$,
∴CD=10x+6.
在Rt△ACD中,由勾股定理得:${({14x})^2}={({10x+6})^2}+{({6\sqrt{3}})^2}$,
解得:${x_1}=2,{x_2}=-\frac{3}{4}$(不合题意舍去).
答:巡逻船从出发到成功拦截所用时间为2小时.

点评 本题考查了解直角三角形的应用、勾股定理、三角函数;由三角函数和勾股定理得出方程是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图1,在以O为原点的平面直角坐标系中,点A的坐标为(0,2),点P(s,t)在抛物线y=$\frac{1}{4}$x2+1上,点P到x轴的距离记为m,PA=n.
(1)若s=4,分别求出m、n的值,并比较m与n的大小关系;
(2)若点P是该抛物线上的一个动点,则(1)中m与n的大小关系是否仍成立?请说明理由;
(3)如图2,过点P的直线y=kx(k≠0)与抛物线交于另一点Q连接PA、QA,是否存在k使得PA=2QA?若存在,请求出k的值;若不存在,请举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为$\frac{3}{4}$m,到墙边OA的距离分别为$\frac{1}{2}$m,$\frac{3}{2}$m.
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在(  )
A.第504个正方形的左下角B.第504个正方形的右下角
C.第505个正方形的左上角D.第505个正方形的右下角

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列运算正确的是(  )
A.a2+a3=a5B.(a+2b)2=a2+2ab+b2C.a6÷a3=a2D.(-2a32=4a6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,已知?OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,直线l:y=-x+1与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限,∠POQ=135°.
(1)求△AOB的周长;
(2)设AQ=t>0,试用含t的代数式表示点P的坐标;
(3)当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记tan∠AOQ=m,若过点A的二次函数y=ax2+bx+c同时满足以下两个条件:
①6a+3b+2c=0;
②当m≤x≤m+2时,函数y的最大值等于$\frac{2}{m}$,求二次项系数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.
(1)求证:△BCF≌△BA1D.
(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在平面直角坐标系中,已知点A(-3,6),B(-9,-3),以原点O为位似中心,相似比为$\frac{1}{3}$,把△ABO缩小,则点A的对应点A′的坐标是(  )
A.(-1,2)B.(-9,18)C.(-9,18)或(9,-18)D.(-1,2)或(1,-2)

查看答案和解析>>

同步练习册答案