精英家教网 > 初中数学 > 题目详情
如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:
(1)在图1中,写出∠A、∠B、∠C、∠D之间关系为;
(2)如图2,在(1)的结论下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于点M、N.
①仔细观察,在图2中有
6
6
个以线段AD为边的“8字形”;
②若∠D=40°,∠B=36°,试求∠P的度数;
③∠D和∠B为任意角时,其他条件不变,试直接写出∠P与∠D、∠B之间数量关系,不需说明理由.
分析:(1)根据三角形内角和定理得到∠A+∠D+∠AOD=180°,∠C+∠D+∠BOC=180°,根据对顶角相等得∠AOD=∠BOC,所以∠A+∠D=∠B+∠C;
(2)①以M为交点的“8字形”有1个,以N为交点的“8字形”有1个,以O为交点的“8字形”有4个;
②根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据(1)中的结论得到∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,两等式相减得到∠D-∠P=∠P-∠B,
即∠P=
1
2
(∠D+∠B),然后把∠D=40°,∠B=36°代入计算即可;
③由②的证明得到∠P=
1
2
(∠D+∠B).
解答:解:(1)∵∠A+∠D+∠AOD=180°,∠C+∠D+∠BOC=180°,
而∠AOD=∠BOC,
∴∠A+∠D=∠B+∠C;
(2)①6;
②∵∠DAB和∠BCD的平分线AP和CP相交于点P,
∴∠1=∠2,∠3=∠4,
∵∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,
∴∠D-∠P=∠P-∠B,
即∠P=
1
2
(∠D+∠B),
∵∠D=40°,∠B=36°
∴∠P=
1
2
(40°+36°)=38°;    
(4)∠P=
1
2
(∠B+∠D).
故答案为6.
点评:本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图1,已知线段AB和直线m,点A在直线m上,以AB为一边画等腰△ABC,且使点C在直线m上,这样的等腰三角形最多有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•翔安区模拟)(1)如图1,已知线段AB,请用直尺和圆规作出线段AB的垂直平分线(不写画法,保留作图痕迹);
(2)计算:(-1)0+2sin60°+
16
-|1-
3
|

(3)如图2,已知AB∥CD,直线MN交AB于M,交CD于N,ME平分∠AMN,NF平分∠DNM,求证:EM∥FN.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•梅州)如图1,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.
(1)当△APC与△PBD的面积之和取最小值时,AP=
a
a
;(直接写结果)
(2)连接AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动面变化?请说明理由;
(3)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2011•石家庄二模)阅读材料:
我们将能完全覆盖平面图形的最小圆称为该平面图形的最小覆盖圆.
例如:线段AB的最小覆盖圆就是以线段AB为直径的圆.
操作探究:
(1)如图1:已知线段AB与其外一点C,作过A、B、C三点的最小覆盖圆;(不写作法,保留作图痕迹)
(2)边长为1cm的正方形的最小覆盖圆的半径是
2
2
2
2
cm;
如图2,边长为1cm的两个正方形并列在一起,则其最小覆盖圆的半径是
5
2
5
2
cm;
如图3,半径为1cm的两个圆外切,则其最小覆盖圆的半径是
2
2
cm.
联想拓展:
⊙O1的半径为8,⊙O2,⊙O3的半径均为5.
(1)当⊙O1、⊙O2、⊙O3两两外切时(如图4),则其最小覆盖圆的半径是
40
3
40
3

(2)当⊙O1、⊙O2、⊙O3两两相切时,(1)中的结论还成立吗?如果不成立,则其最小覆盖圆的半径是
13
13
,并作出示意图.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知线段AB=8,点C是AB上的一动点(不包括A、B),在AB同侧作两个等边三角形ACD和BCE,连DE,点P、F分别是DE和BE的中点,连接AF,分别交DC、CE于G、H.
(1)写出图中所有的相似三角形(除等边三角形ACD和BCE外);
(2)当点C在AB中点时,如图2,求CP的长及AG:GH:HF;
(3)点M、N是线段AB上两点,且AM=BN=2,当点C从点M向点N运动时,求点P所经过的路径长.

查看答案和解析>>

同步练习册答案