ѧϰ¹ýÈý½Çº¯Êý£¬ÎÒÃÇÖªµÀÔÚÖ±½ÇÈý½ÇÐÎÖУ¬Ò»¸öÈñ½ÇµÄ´óСÓëÁ½Ìõ±ß³¤µÄ±ÈÖµÏ໥Ψһȷ¶¨£¬Òò´Ë±ß³¤Óë½ÇµÄ´óС֮¼ä¿ÉÒÔÏ໥ת»¯£®ÀàËƵģ¬Ò²¿ÉÒÔÔÚµÈÑüÈý½ÇÐÎÖн¨Á¢±ß½ÇÖ®¼äµÄÁªÏµ£¬ÎÒÃǶ¨Ò壺µÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¶¥½ÇAµÄÕý¶Ô¼Ç×÷sadA£¬Õâʱsad A=
1
2
£®ÈÝÒ×ÖªµÀÒ»¸ö½ÇµÄ´óСÓëÕâ¸ö½ÇµÄÕý¶ÔÖµÒ²ÊÇÏ໥Ψһȷ¶¨µÄ£®
¸ù¾ÝÉÏÊö¶Ô½ÇµÄÕý¶Ô¶¨Ò壬½âÏÂÁÐÎÊÌ⣺
£¨1£©Ìî¿Õ£ºsad60¡ã=
1
1
£¬sad90¡ã=
2
2
£¬sad120¡ã=
3
3
£»
£¨2£©¶ÔÓÚ0¡ã£¼A£¼180¡ã£¬¡ÏAµÄÕý¶ÔÖµsadAµÄÈ¡Öµ·¶Î§ÊÇ
0£¼sadA£¼2
0£¼sadA£¼2
£»
£¨3£©Èçͼ£¬ÒÑÖªsinA=
3
5
£¬ÆäÖÐAΪÈñ½Ç£¬ÊÔÇósadAµÄÖµ£»
£¨4£©ÉèsinA=k£¬ÇëÖ±½ÓÓÃkµÄ´úÊýʽ±íʾsadAµÄֵΪ
2-2
1-k2
£®
2-2
1-k2
£®
£®
·ÖÎö£º£¨1£©µ±A=60¡ã£¬Èý½ÇÐÎΪµÈ±ßÈý½ÇÐΣ¬µ×±ßÓëÑüÏàµÈ£»µ±A=90¡ã£¬Èý½ÇÐÎΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬µ×±ßÊÇÑüµÄ
2
±¶£»µ±A=120¡ã£¬×÷µ×±ßÉϵĸߣ¬µ×½ÇΪ30¡ã£¬Ò×ÇóµÃµ×±ßÊÇÑüµÄ
3
±¶£¬È»ºó¸ù¾ÝµÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©¼´¿ÉµÃµ½´ð°¸£»
£¨2£©0¡ã£¼A£¼180¡ã£¬¸ù¾ÝÈý½ÇÐÎÈý±ßµÄ¹ØϵµÃµ½Á½ÑüÖ®ºÍ´óÓڵױ߼´¿ÉµÃµ½0£¼sadA£¼2£»
£¨3£©¹ýB×÷BD¡ÍACÓÚD£¬ÉèBD=3x£¬AB=5x£¬ÀûÓù´¹É¶¨Àí¼ÆËã³öAD=4x£¬ÔòDC=x£¬ÔÚRt¡÷BDCÖиù¾Ý¹´¹É¶¨ÀíÇó³öBC£¬È»ºó¸ù¾Ý¶¥½ÇµÄÕý¶Ô¶¨ÒåÇóÖµ¼´¿É£»
£¨4£©Ó루3£©µÄ¼ÆËã·½·¨Ò»Ñù£®
½â´ð£º½â£º£¨1£©1£»
2
£»
3
£»

£¨2£©0£¼sadA£¼2£»

£¨3£©¹ýB×÷BD¡ÍACÓÚD£¬Èçͼ£¬
¡àsinA=
3
5
=
BD
AB
£¬
ÉèBD=3x£¬AB=5x£¬
¡àAD=
(5x)2-(3x)2
=4x£¬
¡àDC=5x-4x=x£¬
ÔÚRt¡÷BDCÖУ¬BC=
BD2+DC2
=
(3x)2+x2
=
10
x£¬
¡àsadA=
BC
AB
=
10
5
£»

£¨4£©ÈçÉÏͼ£¬
sinA=k£¬BD=kAB£¬
¡àAD=
AB2-BD2
=
1-k2
AB£¬
¡àDC=AC-AD=£¨1-
1-k2
£©AB£¬
¡àBC=
BD2+DC2
=
2-2
1-k2
AB£¬
¡àsadA=
BC
AB
=
2-2
1-k2
£®
¹Ê´ð°¸Îª
2-2
1-k2
£®
µãÆÀ£º±¾Ì⿼²éÁ˽âÖ±½ÇÈý½ÇÐΣºÀûÓÃÈý½Çº¯ÊýµÄ¶¨ÒåºÍ¹´¹É¶¨ÀíÇó³öÈý½ÇÐÎÖÐδ֪µÄ½ÇºÍ±ß£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøѧϰ¹ýÈý½Çº¯Êý£¬ÎÒÃÇÖªµÀÔÚÖ±½ÇÈý½ÇÐÎÖУ¬Ò»¸öÈñ½ÇµÄ´óСÓëÁ½Ìõ±ß³¤µÄ±ÈÖµÏ໥Ψһȷ¶¨£¬Òò´Ë±ß³¤Óë½ÇµÄ´óС֮¼ä¿ÉÒÔÏ໥ת»¯£®
ÀàËƵģ¬¿ÉÒÔÔÚµÈÑüÈý½ÇÐÎÖн¨Á¢±ß½ÇÖ®¼äµÄÁªÏµ£¬ÎÒÃǶ¨Ò壺µÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¶¥½ÇAµÄÕý¶Ô¼Ç×÷sadA£¬Õâʱsad A=
µ×±ß
Ñü
=
BC
AB
£®ÈÝÒ×ÖªµÀÒ»¸ö½ÇµÄ´óСÓëÕâ¸ö½ÇµÄÕý¶ÔÖµÒ²ÊÇÏ໥Ψһȷ¶¨µÄ£®
¸ù¾ÝÉÏÊö¶Ô½ÇµÄÕý¶Ô¶¨Ò壬½âÏÂÁÐÎÊÌ⣺
£¨1£©sad60¡ãµÄֵΪ£¨¡¡¡¡£©A£®
1
2
  B£®1  C£®
3
2
D£®2
£¨2£©¶ÔÓÚ0¡ã£¼A£¼180¡ã£¬¡ÏAµÄÕý¶ÔÖµsadAµÄÈ¡Öµ·¶Î§ÊÇ
 
£®
£¨3£©ÒÑÖªsin¦Á=
3
5
£¬ÆäÖЦÁΪÈñ½Ç£¬ÊÔÇósad¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨±¾Ð¡ÌâÂú·Ö10·Ö£©
ѧϰ¹ýÈý½Çº¯Êý£¬ÎÒÃÇÖªµÀÔÚÖ±½ÇÈý½ÇÐÎÖУ¬Ò»¸öÈñ½ÇµÄ´óСÓëÁ½Ìõ±ß³¤µÄ±ÈÖµÏ໥Ψһȷ¶¨£¬Òò´Ë±ß³¤Óë½ÇµÄ´óС֮¼ä¿ÉÒÔÏ໥ת»¯.
ÀàËƵģ¬¿ÉÒÔÔÚµÈÑüÈý½ÇÐÎÖн¨Á¢±ß½ÇÖ®¼äµÄÁªÏµ£¬ÎÒÃǶ¨Ò壺µÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©.Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¶¥½ÇAµÄÕý¶Ô¼Ç×÷sadA£¬Õâʱsad A=.ÈÝÒ×ÖªµÀÒ»¸ö½ÇµÄ´óСÓëÕâ¸ö½ÇµÄÕý¶ÔÖµÒ²ÊÇÏ໥Ψһȷ¶¨µÄ.
¸ù¾ÝÉÏÊö¶Ô½ÇµÄÕý¶Ô¶¨Ò壬½âÏÂÁÐÎÊÌ⣺

£¨1£©sad µÄֵΪ£¨  £©
A£®B£®1C£®D£®2
£¨2£©¶ÔÓÚ£¬¡ÏAµÄÕý¶ÔÖµsad AµÄÈ¡Öµ·¶Î§ÊÇ        .
£¨3£©ÒÑÖª£¬ÆäÖÐΪÈñ½Ç£¬ÊÔÇósadµÄÖµ.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012½ìÕã½­Ìį̀ÖÐƬ½ÌÑÐÇø¾ÅÄ꼶µÚËÄ´ÎÄ£Ä⿼ÊÔÊýѧÊÔ¾í£¨´ø½âÎö£© ÌâÐÍ£º½â´ðÌâ

ѧϰ¹ýÈý½Çº¯Êý£¬ÎÒÃÇÖªµÀÔÚÖ±½ÇÈý½ÇÐÎÖУ¬Ò»¸öÈñ½ÇµÄ´óСÓëÁ½Ìõ±ß³¤µÄ±ÈÖµÏ໥Ψһȷ¶¨£¬Òò´Ë±ß³¤Óë½ÇµÄ´óС֮¼ä¿ÉÒÔÏ໥ת»¯.ÀàËƵģ¬¿ÉÒÔÔÚµÈÑüÈý½ÇÐÎÖн¨Á¢±ß½ÇÖ®¼äµÄÁªÏµ£¬ÎÒÃǶ¨Ò壺µÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©.Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¶¥½ÇAµÄÕý¶Ô¼Ç×÷sadA £¬ÕâʱsadA=.ÈÝÒ×ÖªµÀÒ»¸ö½ÇµÄ´óСÓëÕâ¸ö½ÇµÄÕý¶ÔÖµÒ²ÊÇÏ໥Ψһȷ¶¨µÄ.  ¸ù¾ÝÉÏÊö¹ØÓڽǵÄÕý¶Ô¶¨Ò壬½â¾öÏÂÁÐÎÊÌ⣺

¡¾Ð¡Ìâ1¡¿sadµÄֵΪ£¨   ¡ø £©

A£®B£®1 C£®D£®2
¡¾Ð¡Ìâ2¡¿¶ÔÓÚ£¬¡ÏAµÄÕý¶ÔÖµsadAµÄÈ¡Öµ·¶Î§ÊÇ(  ¡ø   )
A£®B£®C£®
D£®
¡¾Ð¡Ìâ3¡¿ÒÑÖª£¬Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACBΪֱ½Ç£¬£¬AB=25ÊÔÇósadAµÄÖµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2011ÄêÄϾ©ÊÐÁùºÏÇøÖп¼ÊýѧһģÊÔ¾í ÌâÐÍ£º½â´ðÌâ

£¨±¾Ð¡ÌâÂú·Ö10·Ö£©

    ѧϰ¹ýÈý½Çº¯Êý£¬ÎÒÃÇÖªµÀÔÚÖ±½ÇÈý½ÇÐÎÖУ¬Ò»¸öÈñ½ÇµÄ´óСÓëÁ½Ìõ±ß³¤µÄ±ÈÖµÏ໥Ψһȷ¶¨£¬Òò´Ë±ß³¤Óë½ÇµÄ´óС֮¼ä¿ÉÒÔÏ໥ת»¯.

ÀàËƵģ¬¿ÉÒÔÔÚµÈÑüÈý½ÇÐÎÖн¨Á¢±ß½ÇÖ®¼äµÄÁªÏµ£¬ÎÒÃǶ¨Ò壺µÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©.Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¶¥½ÇAµÄÕý¶Ô¼Ç×÷sadA£¬Õâʱsad A=.ÈÝÒ×ÖªµÀÒ»¸ö½ÇµÄ´óСÓëÕâ¸ö½ÇµÄÕý¶ÔÖµÒ²ÊÇÏ໥Ψһȷ¶¨µÄ.

¸ù¾ÝÉÏÊö¶Ô½ÇµÄÕý¶Ô¶¨Ò壬½âÏÂÁÐÎÊÌ⣺

£¨1£©sad µÄֵΪ£¨   £©A.       B. 1  C.      D. 2

 

£¨2£©¶ÔÓÚ£¬¡ÏAµÄÕý¶ÔÖµsad AµÄÈ¡Öµ·¶Î§ÊÇ         .

£¨3£©ÒÑÖª£¬ÆäÖÐΪÈñ½Ç£¬ÊÔÇósadµÄÖµ.

 

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸