精英家教网 > 初中数学 > 题目详情

如图,等边三角形ABC的边长是6cm,BD是中线,延长BC至E,使CE=CD,连接DE,则DE的长是________cm.

3
分析:根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.
解答:∵△ABC是等边三角形,BD是中线,
∴∠ABC=∠ACB=60°.
∠DBC=30°(等腰三角形三线合一).
又∵CE=CD,
∴∠CDE=∠CED.
又∵∠BCD=∠CDE+∠CED,
∴∠CDE=∠CED=∠BCD=30°.
∴∠DBC=∠CED.
∴DB=DE(等角对等边).
∵等边三角形ABC的边长是6cm,
∴DE=BD=3
故答案为3
点评:此题主要考查学生对等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到∠CDE=30°是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,等边三角形AOB的顶点A在反比例函数y=
3
x
(x>0)的图象上,点B在x轴上.
(1)求点B的坐标;
(2)求直线AB的函数表示式;
(3)在y轴上是否存在点P,使△OAP是等腰三角形?若存在,直接把符合条件的点P的坐标都写出来;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则
FG
AF
=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,等边三角形ABC的边长为6,点D,E分别在边AB,AC上,且AD=AE=2.若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设点F运动的时间为t秒.当t>0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O.
(1)设△EGA的面积为S,写出S与t的函数关系式;
(2)当t为何值时,AB⊥GH.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边三角形ABC的边长为a,若D、E、F、G分别为AB、AC、CD、BF的中点,则△BEG的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:013

已知:如图,在等边三角形AB,AD=BE=CF,D,E,F不是各边的中点,AE,BF,CD分别交于P,M,N在每一组全等三角形中,有三个三角形全等,在图中全等三角形的组数是

[    ]

A.5   B.4    C.3   D.2

 

查看答案和解析>>

同步练习册答案