精英家教网 > 初中数学 > 题目详情
如图,已知矩形ABCD的边BC在x轴上,矩形ABCD对角线的交点E的横坐标为m(m>0),且点A、E和点N(1,2)都在函数y=
k
x
的图象上.
(1)求k的值;
(2)求点A的坐标(用m表示);
(3)当满足上述条件的矩形ABCD为正方形时,请求出此时m的值;
(4)点F在y轴的正半轴上,且OF=OB,在(3)的条件下,是否线段BC上存在点P,使PD=PF,若存在,求出符合条件的点P的坐标,若不存在,请说明理由.
(1)因为抛物线过N(1,2),所以k=2;

(2)∵E的横坐标为m(m>0),
∴纵坐标为
2
m
,根据矩形性质,AB=
4
m
,即A点纵坐标为
4
m
,代入y=
2
x
中,得x=
m
2

∴A(
m
2
4
m
);

(3)根据上面的解题过程可得B(
m
2
,0),C(
3
2
m
,0),BC=m,
∵AB=BC,∴
4
m
=m,解得m=±2,
∵m>0,∴m=2;

(4)若PD=PF,则P为DF的垂直平分线与x轴的交点,
根据题意在BC上,设其坐标为P(x,0),则PC=3-x,
根据勾股定理得
x2+12
=
(3-x)2+22
,解得x=2,
∴线段BC上存在点P,使PD=PF,P(2,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:
第1天第2天第3天第4天第5天第6天第7天第8天
售价
x(元/千克)
400250240200150125120
销售量
y(千克)
304048608096100
观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.
(1)写出这个反比例函数的解析式,并补全表格;
(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数y=
k
x
的图象经过点A(2,m),过点A作AB垂直y轴于点B,△AOB的面积为5.
(1)求k和m的值;
(2)已知点C(-5,-2)在反比例函数图象上,直线AC交x轴于点M,求△AOM的面积;
(3)过点C作CD⊥x轴于点D,连接BD,试证明四边形ABDC是梯形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,正比例函数y=kx与反比例函数y=
m
x
的图象交于点A(-3,2).
(1)试确定上述正比例函数与反比例函数的解析式;
(2)根据图象回答,在第二象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)P(m,n)是反比例函数图象上的一动点,其中-3<m<0,过点P作直线PBx轴,交y轴于点B,过点A作直线ADy轴,交x轴于点D,交直线PB于点C.当四边形OACP的面积为6时,请判断线段BP与CP的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,Rt△AOB中,∠AOB=90°,OA=4,OB=2,点B在反比例函数y=
2
x
图象上,则图中过点A的双曲线解析式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线AC与双曲线y=
k
x
在第四象限交于点A(x0,y0),交x轴于点C,且AO=
13
点A的横坐标为2,过点A作AB⊥x轴于点B,且S△ABC:S△ABO=4:1.
(1)求k的值及直线AC的解析式;
(2)在第四象限内,双曲线y=
k
x
上有一动点D(m,n),设△BCD的面积为S,求S与m的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点P在反比例函数y=
1
x
(x>0)的图象上,且横坐标为2.若将点P先向右平移两个单位,再向上平移一个单位后所得图象为点P′.则经过点P'的反比例函数图象的解析式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCO(OA>OC)的两边分别在x轴的负半轴和y轴的正半轴上,点B在反比例函数y=-
8
x
(x<0)的图象上,且OC=2.将矩形ABCO以C为旋转中心,逆时针转90°后得到矩形EFCD,反比例函数y=
k
x
(x<0)的图象经过点E.
(1)求k的值;
(2)判断线段BE的中点M是否在反比例函数y=
k
x
(x<0)的图象上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

●探究:
(1)在图中,已知线段AB,CD,其中点分别为E,F.
①若A(-1,0),B(3,0),则E点坐标为______;
②若C(-2,2),D(-2,-1),则F点坐标为______;
(2)在图中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.
●归纳:
无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=______,y=______.(不必证明)
●运用:
在图中,一次函数y=x-2与反比例函数y=
3
x
的图象交点为A,B.
①求出交点A,B的坐标;
②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.

查看答案和解析>>

同步练习册答案