精英家教网 > 初中数学 > 题目详情
15.不等式2x+5≥3x+2的正整数解是1,2,3.

分析 根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得不等式的解集,再确定其正整数解.

解答 解:移项,得:2x-3x≥2-5,
合并同类项,得:-x≥-3,
系数化为1,得:x≤3,
∴不等式的正整数解是1,2,3,
故答案为:1,2,3.

点评 本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.先化简,再求代数式$\frac{a+1}{a-1}$-$\frac{a}{{a}^{2}-2a+1}$÷$\frac{1}{a}$的值,其中a=1-sin45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.列方程或方程组解应用题:
为开阔学生的视野在社会大课堂活动中,某校组织初三年级学生参观科技馆,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.求
(1)该校初三年级有学生多少人?
(2)原计划租用多少辆45座客车?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读理解题:
阅读:解不等式(x+1)(x-3)>0
解:根据两数相乘,同号得正,原不等式可以转化为:$\left\{\begin{array}{l}x+1>0\\ x-3>0\end{array}\right.$或$\left\{\begin{array}{l}x+1<0\\ x-3<0\end{array}\right.$
解不等式组$\left\{\begin{array}{l}x+1>0\\ x-3>0\end{array}\right.$得:x>3
解不等式组$\left\{\begin{array}{l}x+1<0\\ x-3<0\end{array}\right.$得:x<-1
所以原不等式的解集为:x>3或x<-1
问题解决:根据以上阅读材料,解不等式(x-2)(x+3)<0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.
(1)如果x=-1是方程的根,则△ABC的形状为等腰三角形;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.当a>0且x>0时,因为($\sqrt{x}$-$\frac{\sqrt{a}}{\sqrt{x}}$)2≥0,所以x-2$\sqrt{a}$+$\frac{a}{x}$≥0,
从而x+$\frac{a}{x}$≥2$\sqrt{a}$(当x=$\sqrt{a}$时取等号).
记函数y=x+$\frac{a}{x}$(a>0,x>0),由上述结论可知:当x=$\sqrt{a}$时,该函数有最小值为2$\sqrt{a}$.
(1)已知函数y=x+$\frac{9}{x}$(x>0),当x=3时,y取得最小值为6;
(2)已知函数y=x+$\frac{4}{x+1}$(x>-1),则当x为何值时,y取得最小值,并求出该最小值.
(3)已知某汽车的一次运输成本包含以下三个部分:一是固定费用360元;二是燃油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平面每千米的运输成本最低?最低是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.春节期间,为了满足百姓的消费需求,某商场计划购进冰箱、彩电进行销售.冰箱、彩电的进价、售价如表:
进价(元/台)售价(元/台)
冰箱m2500
彩电m-4002000
(1)商场用80000元购进冰箱的数量用64000元购进彩电的数量相等,求表中m的值;
(2)为了满足市场需要要求,商场决定用不超过9万元采购冰箱、彩电共50台,且冰箱的数量不少于彩电数量的$\frac{5}{6}$;若该商场将购进的冰箱、彩电全部售出,求能获得的最大利润w的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转20°,则三角板的斜边与射线OA的夹角α为20°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)化简分式:$(\frac{x+1}{x-1}+1)÷\frac{{{x^2}+x}}{{{x^2}-2x+1}}$;
(2)从-2≤x≤2的范围内选取一个合适的整数作为x的值,代入求值.

查看答案和解析>>

同步练习册答案