精英家教网 > 初中数学 > 题目详情
阅读探究:
例:如图1,△ABC是等边三角形,点M是边BC的中点,∠AMN=60°,且MN交三角形外角的平分线CN于点N.求证:AM=MN.
思路点拨:取的AB中点P,连结PM 易证△APM ≌△MCQ 从而AM=MN.
问题解决:
(1)如图2,四边形ABCD是正方形,点M是边BC的中点,CN是正方形 ABCD的外角∠DCQ的平分线.
        ①填空:当∠AMN = __________ °时,AM=MN;
        ②证明①的结论.
(2)请根据例题和问题(1)的解题过程,在正五边形ABCDE中推广出一个类似的真命题.(请在图3中作出相应图形,标注必要的字母,并写出已知和结论,无需证明.)
(1)①填空:当∠AMN =90°时,AM=MN;
         ②证明:取的AB中点P,连结PM
              ∵四边形ABCD是正方形
              ∴∠PAM +∠AMB =90°
              ∵∠AMN =90° 
              ∴∠CMN+∠AMB =90°
             ∴∠PAM = CMN
             ∵点M是边BC的中点 点P是边AB的中点 AB=BC
             ∴AP=MC BP=BM
             ∵∠B =90° 
             ∴△BPM是等腰直角三角形
             ∴∠BPM =45°
             ∴∠APM =135°
             ∵∠DCB =90° 
             ∴∠DCQ =90°
             ∴∠NCQ =45°
             ∴∠MCN =135°
             ∴∠APM =∠MCN 
             ∴△APM ≌△MCQ 
             ∴AM=MN.
(2)正五边形ABCDE中点M是边BC的中点,CN是正五
      边形ABCDE的外角∠DCQ的平分线,当∠AMN =108°.
  求证:AM=MN.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

28、阅读探究:
例:如图1,△ABC是等边三角形,点M是边BC的中点,∠AMN=60°,且MN交三角形外角的平分线CN于点N、求证:AM=MN.
思路点拨:取的AB中点P,连接PM,易证△APM≌△MCQ从而AM=MN.
问题解决:
(1)如图2,四边形ABCD是正方形,点M是边BC的中点,CN是正方形ABCD的外角∠DCQ的平分线.
①填空:当∠AMN=
90°
°时,AM=MN;
②证明①的结论.
(2)请根据例题和问题(1)的解题过程,在正五边形ABCDE中推广出一个类似的真命题.(请在图3中作出相应图形,标注必要的字母,并写出已知和结论,无需证明.)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请你阅读引例及其分析解答,希望能给你以启示,然后完成对探究一和探究二中间题的解答.
引例:设a,b,c为非负实数,求证:
a2+b2
+
b2+c2
+
c2+a2
2
(a+b+c),
分析:考虑不等式中各式的几何意义,我们可以试构造一个边长为a+b+c的正方形来研究.
解:如图①设正方形的边长为a+b+c,
则AB=
a2+b2

BC=
b2+c 2

CD=
a2+c2

显然AB+BC+CD≥AD,
a2+b2
+
b2+c2
+
c2+a2
2
(a+b+c)
探究一:已知两个正数x、y,满足x+y=12,求
x2+4
+
y2+9
的最小值:
解:(图②仅供参考)
探究二:若a、b为正数,求以
a2+b2
4a2+b2
a2+4b2
为边的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作业宝(1)阅读理解:
我们知道,只用直尺和圆规不能解决的三个经典的希腊问题之一是三等分任意角,但是这个任务可以借助如图1所示的一边上有刻度的勾尺完成,勾尺的直角顶点为P,
“宽臂”的宽度=PQ=QR=RS,(这个条件很重要哦!)勾尺的一边MN满足M,N,Q三点共线(所以PQ⊥MN).
下面以三等分∠ABC为例说明利用勾尺三等分锐角的过程:
第一步:画直线DE使DE∥BC,且这两条平行线的距离等于PQ;
第二步:移动勾尺到合适位置,使其顶点P落在DE上,使勾尺的MN边经过点B,同时让点R落在∠ABC的BA边上;
第三步:标记此时点Q和点P所在位置,作射线BQ和射线BP.
请完成第三步操作,图中∠ABC的三等分线是射线______、______.
(2)在(1)的条件下补全三等分∠ABC的主要证明过程:
∵______,BQ⊥PR,
∴BP=BR.(线段垂直平分线上的点与这条线段两个端点的距离相等)
∴∠______=∠______.
∵PQ⊥MN,PT⊥BC,PT=PQ,
∴∠______=∠______.
(角的内部到角的两边距离相等的点在角的平分线上)
∴∠______=∠______=∠______.
(3)在(1)的条件下探究:数学公式是否成立?如果成立,请说明理由;如果不成立,请在图2中∠ABC的外部画出数学公式(无需写画法,保留画图痕迹即可).

查看答案和解析>>

同步练习册答案