【题目】如图,△ABC为⊙O内接等边三角形,将△ABC绕圆心O旋转30°到△DEF处,连接AD、AE,则∠EAD的度数为( )
A.150°B.135°C.120°D.105°
【答案】C
【解析】
连结OA、OE、OD、AE、AD,根据旋转的性质得∠AOD=30°,再根据圆周角定理得∠AED=∠AOD=15°,然后根据等边三角形的性质得∠EFD=60°,则∠DOE=120°,求出∠AOE=∠DOE-∠AOD=90°,则∠ADE=45°,根据三角形内角和可求出∠EAD的度数.
如图,连结OA、OE、OD、AE、AD,
∵△ABC绕点O顺时针旋转30°得到△DEF,
∴∠AOD=30°,
∴∠AED=∠AOD=15°,
∵△DEF为等边三角形,
∴∠EFD=60°,
∴∠DOE=2∠EFD=120°,
∴∠AOE=∠DOE-∠AOD=120°-30°=90°,
∴∠ADE=∠AOE=45°,
∴∠EAD=180°-∠AED-∠ADE=180°-15°-45°=120°.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在半圆⊙O中,直径AB=4,点C、D是半圆上两点,且∠BOC=84°,∠BOD=36°,P为直径上一点,则PC+PD的最小值为( )
A.4B.2C.2D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把函数y1=x2-3x+2(x>0)沿y轴翻折得到函数y2,函数y1与函数y2的图象合起来组成函数y3的图象.若直线y=kx+2与函数y3的图象刚好有两个交点,则满足条件的k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.
(1)如图1,当a=4时,求b的值;
(2)当a=4时,如图2,求出b的值;
(3)如图3,请写出∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>的解集;
(3)过点B作BC⊥x轴,垂足为C,求S△ABC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BO是△ABC的AC边上的高,其中BO=8,AO=6,CO=4,点M以2个单位长度/秒的速度自C向A在线段CA上作匀速运动,同时点N以5个单位长度/秒的速度自A向B在射线AB上作匀速运动,MN交OB于点P.当M运动到点A时,点M、N同时停止运动.设点M运动时间为t.
(1)线段AN的取值范围是______.
(2)当0<t<2时,
①求证:MN:NP为定值.
②若△BNP与△MNA相似,求CM的长.
(3)当2<t<5时,若△BNP是等腰三角形,求CM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)画出△ABC关于原点成中心对称的三角形△A′B′C′;
(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列是关于四个图案的描述.
图1所示是太极图,俗称“阴阳鱼”,该图案关于外圈大圆的圆心中心对称;
图2所示是一个正三角形内接于圆;
图3所示是一个正方形内接于圆;
图4所示是两个同心圆,其中小圆的半径是外圈大圆半径的三分之二.
这四个图案中,阴影部分的面积不小于该图案外圈大圆面积一半的是( )
A.图1和图3B.图2和图3C.图2和图4D.图1和图4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com