精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是________.(仅添加一对相等的线段或一对相等的角)

【答案】BE=CD或∠EBC=∠DCB或∠DBC=∠BCE或AB=AC

【解析】∵△ABC的高BD、CE相交于点0.

∴∠BEC=∠CDB=90°,

∵BC=CB,

要使BD=CE,只需△BCE≌△CBD,

BE=CD时,利用HL即可证得△BCE≌△CBD;

当∠ABC=∠ACB时,利用AAS即可证得△BCE≌△CBD;

同理:当∠DBC=∠ECB也可证得△BCE≌△CBD;

AB=AC时,∠ABC=∠ACB,∴当AB=AC时,也可证得△BCE≌△CBD等.

故答案为:BD=CE∠DBC=∠ECB或∠EBC=∠DCB AB=ACAE=AD(答案不唯一,写出一个正确的即可)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用xy(其中xy)表示小矩形的长与宽,请观察图案,指出以下关系式中不正确的是(  )

A.x+y=7B.xy=2C.x2y2=4D.4xy+4=49

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCADE均为等边三角形,点OAC的中点,点D在射线BO上,连结OEEC,则∠ACE_____°;若AB1,则OE的最小值=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使ADE=30°.

(1)求证:ABD∽△DCE;

(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;

(3)当ADE是等腰三角形时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,∠B的角平分线BEAD交于点EBED的角平分线EFDC交于点F,若AB=9DF=2FC,则BC=____.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】CD经过∠BCA顶点C的一条直线,CA=CBEF分别是直线CD上两点,且∠BEC=CFA=

1)若直线CD经过∠BCA的内部,且EF在射线CD上,请解决下面两个问题:

①如图1,若∠BCA=90°,=90°,则BE_____CFEF____.(填”““=”

②如图2,若<∠BCA180°,请添加一个关于∠与∠BCA关系的条件__________,使①中的两个结论仍然成立,并证明两个结论成立.

2)如图3,若直线CD经过∠BCA的外部,∠=BCA,请提出EFBEAF三条线段数量关系的合理猜想(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(发现问题)

如图1,已知,以点为直角顶点,为腰向外作等腰直角、请你以为直角顶点、为腰,向外作等腰直角(不写作法,保留作图痕迹).连接.那么的数量关系是________

(拓展探究)

如图2,已知,以为边向外作正方形和正方形,连接,试判断之间的数量关系,并说明理由.

(解决问题)

如图3,有一个四边形场地,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题情境)如图①,在△ABC中,若AB10AC6,求BC边上的中线AD的取值范围.

1)(问题解决)延长AD到点E使DEAD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把ABAC2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是   

(反思感悟)解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.

2)(尝试应用)如图②,△ABC中,∠BAC90°,ADBC边上的中线,试猜想线段ABACAD之间的数量关系,并说明理由.

3)(拓展延伸)如图③,△ABC中,∠BAC90°,DBC的中点,DMDNDMAB于点MDNAC于点N,连接MN.当BM4MN5AC6时,请直接写出中线AD的取值范围.(温馨提示:如果设直角三角形的两条直角边长度分别是ab,斜边长度是c,那么可以用数学语言表达三边关系,a2+b2c2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中AD是A的外角平分线,P是AD上一动点且不与点A、D重合,记PB+PC=a,AB+AC=b,则a、b的大小关系是(

Aa>b Ba=b Ca<b D不能确定

查看答案和解析>>

同步练习册答案