精英家教网 > 初中数学 > 题目详情
已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.

【答案】分析:(1)本题可根据切线长定理得出PC平分∠ACO,然后根据垂径定理即可得出PC⊥AO.
(2)求直线AB的解析式,已知了直线AB上C点的坐标.再得出一点的坐标即可用待定系数法求出直线AB的解析式.以求A点为例,可在直角三角形PCO中,根据特殊角∠CPO(30°),以及半径的长,求出OP的长,然后可过A作x轴的垂线,用相同的方法求出A点的坐标.由此可求出直线AB的解析式.
(3)由于△PAC≌△POC,因此两三角形的面积相等,四边形POCA的面积实际是2倍的△POC的面积.由此可求出S与x的函数关系式.
(4)根据圆的对称性可知A、B两点到y轴的距离应该相等,因此△BOC的面积和△ACO的面积相等,(3)中得出△POC与△PAC的面积相等,因此S四边形POCA=S△AOB能得出的条件是△AOC和△POC的面积相等,由于两三角形同底,因此高相等即PA∥OC,因此四边形PACO是个矩形(实际是个正方形),由此可得出AC=OP=r,由此可求出P点的坐标.
解答:(1)证明:∵⊙C与x轴相切于原点O,点P在x轴上,
∴PO与⊙C相切于点O,
又∵PA切⊙C于点A,
∴PO=PA,PC平分∠APO,
∴PC⊥OA.

(2)解:∵△APO为等边三角形,
∴∠CPO=∠APO=×60°=30°,
又∵∠POC=90°,
∴PC=2OC=2×2=4;
在Rt△POC中由勾股定理可得PO=2
作AH⊥PO于H,在Rt△AHO中,OA=OP=2
∴OH=PO=
∴AH=3,
∴A(-,3),
又点C(0,2),
故利用待定系数法可求得直线AB的函数解析式为y=-x+2.

(3)解:S四边形POCA=2S△POC=2××(-x)×2=-2x,
即S=-2x(x<0).

 (4)解:存在这样的一点P,其坐标为(-2,0),
∵S△AOB=2S△AOC,S四边形POCA=2S△POC
∴S△AOC=S△POC
∴PA∥OC;
又∵∠POC=90°,
∴∠APO=90°,
∵∠PAC=∠POC=90°,
∴四边形POCA是矩形,
∴OP=AC=2,
∴P(-2,0).
点评:本题考查了切线的性质、垂径定理、切线长定理、等边三角形的性质、矩形的判定以及一次函数的应用等知识点,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比例函数y=
k
x
的图象的一个分支位于第一象限.
(1)求点A的坐标;
(2)若矩形ABDC从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数y=
k
x
的图象的图象上,求k的值;
(3)矩形ABCD继续向x轴的正方向移动,AB、AC与反比例函数图象分别交于P、Q如图(2),设移动的总时间为t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t的函数关系式;
(4)在(3)的情况下,当t为何值时,S2=
10
7
S1

查看答案和解析>>

科目:初中数学 来源:2011-2012学年甘肃省兰州四中九年级(上)期中数学试卷(解析版) 题型:解答题

如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比例函数y=的图象的一个分支位于第一象限.
(1)求点A的坐标;
(2)若矩形ABDC从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数y=的图象的图象上,求k的值;
(3)矩形ABCD继续向x轴的正方向移动,AB、AC与反比例函数图象分别交于P、Q如图(2),设移动的总时间为t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t的函数关系式;
(4)在(3)的情况下,当t为何值时,S2=S1

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(四川巴中卷)数学(解析版) 题型:解答题

如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,

与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐

标为2,

(1)求一次函数和反比例函数的解析式;

(2)直接写出时x的取值范围。

 

查看答案和解析>>

科目:初中数学 来源:2013届安徽滁州八年级下期末模拟数学试卷(沪科版)(解析版) 题型:解答题

已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐

标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线=-交折线O-A-B于点E.

(1)在点D运动的过程中,若△ODE的面积为S,求S与的函数关系式,并写出自变量的取值范围;

(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.求证:四边形DMEN是菱形;

(3)问题(2)中的四边形DMEN中,ME的长为____________.

    

 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(广西钦州卷)数学 题型:解答题

(本题满分8分)已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.

    (1)如图①,当PA的长度等于 

时,∠PAB=60°;

              当PA的长度等于    时,△PAD是等腰三角形;

    (2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角

坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐

标为(ab),试求2 S1 S3-S22的最大值,并求出此时ab的值.

 

查看答案和解析>>

同步练习册答案