分析 (1)由已知条件可得RT△CDF中∠C=30°,即可知DF=$\frac{1}{2}$CD=AE=2t;
(2)由(1)知DF∥AE且DF=AE,即四边形ADFE是平行四边形,若构成菱形,则邻边相等即AD=AE,可得关于t的方程,求解即可知;
(3)四边形BEDF不为正方形,若该四边形是正方形即∠EDF=90°,即DE∥AB,此时AD=2AE=4t,根据AD+CD=AC求得t的值,继而可得DF≠BF,可得答案.
解答 解:(1)∵RT△ABC中,∠B=90°,∠A=60°,
∴∠C=90°-∠A=30°.
又∵在RT△CDF中,∠C=30°,CD=4t
∴DF=$\frac{1}{2}$CD=2t,
∴DF=AE;
(2)∵DF∥AB,DF=AE,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,
即60-4t=2t,解得:t=10,
即当t=10时,四边形AEFD是菱形;
(3)四边形BEDF不能为正方形,理由如下:
当∠EDF=90°时,DE∥BC.
∴∠ADE=∠C=30°
∴AD=2AE
∵CD=4t,
∴DF=2t=AE,
∴AD=4t,
∴4t+4t=60,
∴t=$\frac{15}{2}$时,∠EDF=90°
但BF≠DF,
∴四边形BEDF不可能为正方形.
点评 本题主要考查直角三角形的性质、平行四边形的判定、菱形的性质、正方形的性质等知识点,熟练掌握平行四边形、菱形、正方形的判定是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | $\underbrace{55…5}_{2013个}$ | B. | $\underbrace{55…5}_{2014个}$ | C. | $\underbrace{55…5}_{2015个}$ | D. | $\underbrace{55…5}_{2016个}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 10° | B. | 15° | C. | 40° | D. | 50° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 55° | B. | 65° | C. | 75° | D. | 85° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com