精英家教网 > 初中数学 > 题目详情
边长为2cm的正方形,对角线的长为______cm.
在直角△ABC中,AB=BC=2cm,
则AC=
22+22
cm=2
2
cm,
故答案为 2
2
cm.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,DCAB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正方形四条边都相等,四个角都是90°,如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是BC上一点,以AE为边在BC所在的直线MN的上方作正方形AEFG.
(1)判断△ADG与△ABE是否全等,并说明理由;
(2)过点F作FH⊥MN,垂足为点H,观察并猜测线段FH与线段CH的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

现有若干张边长不相等但都大于4cm的正方形纸片,从中任选一张,如图从距离正方形的四个顶点2cm处,沿45°角画线,将正方形纸片分成5部分,则中间阴影部分的面积是______cm2;若在上述正方形纸片中再任选一张重复上述过程,并计算阴影部分的面积,你能发现什么规律:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,正方形ABCD中,E、F分别是BC、CD边上的点,AE、DE、BF、AF把正方形分成8小块,各小块的面积分别为S1、S2、…S8,试比较S3与S2+S7+S8的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知正方形ABCD的边长是4,对角线AC、BD交于点O,点E在线段AC上,且OE=
2
3
6
,则∠ABE的度数______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,是一块在电脑屏幕上出现的矩形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个矩形色块图的面积为(  )
A.142B.143C.144D.145

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD中,E、F、G、H分别是各边中点,如果阴影部分的面积是5cm2,那么AB的长度是______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.
(1)证明:四边形EGFH是平行四边形;
(2)在(1)的条件下,若EF⊥BC,且EF=
1
2
BC,证明:平行四边形EGFH是正方形.

查看答案和解析>>

同步练习册答案