精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰RtOAB,∠AOB90°,斜边ABy轴正半轴于点C,若A31),则点C的坐标为_____

【答案】0

【解析】

BBEy轴于E,过AAFx轴于F,根据全等三角形的性质得到B(﹣13),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=x+,于是得到结论.

BBEy轴于E,过AAFx轴于F,如图所示:

∴∠BCO=AFO=90°

A31),

OF=3AF=1

∵∠AOB=90°

∴∠BOC+OBC=BOC+AOF=90°

∴∠BOC=AOF

OA=OB

∴△BOE≌△AOFAAS),

BE=AF=1OE=OF=3

B(﹣13),

设直线AB的解析式为y=kx+b

解得:

∴直线AB的解析式为y=x+

x=0时,y=

∴点C的坐标为(0),

故答案为:(0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,点DAC上,过点DDFBC于点F,且BDBCAD,则∠CDF的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从地匀速开往地,乙车从地沿此公路匀速开往地,两车分别到达目的地后停止甲、乙两车相距的路程(千米)与甲车的行驶时间()之间的函数关系如图所示:

(1)乙年的速度为______千米/时,___________.

(2)求甲、乙两车相遇后之间的函数关系式,并写出相应的自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12)如图,在矩形ABCD中,AB12cmBC8cm.点EFG分别从点

ABC同时出发,沿矩形的边按逆时针方向移动,点EG的速度均为2cm/s,点F的速

度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后

ts时,EFG的面积为Scm2

(1)t1s时,S的值是多少?

(2)写出St之间的函数解析式,并指出自变量t的取值范围;

(3)若点F在矩形的边BC上移动,当t为何值时,以点BEF为顶点的三角形与以CFG为顶点的三角形相似?请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)2x27x+3=0 (2)(x2)2=2x4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC 中,D BC 边的中点,E、F 分别在 AD 及其延长线上,CEBF,连接BE、CF.

(1)求证:BDF ≌△CDE;

(2)若 DE =BC,试判断四边形 BFCE 是怎样的四边形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.

(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;

(2)经调查,若每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在锐角ABC中,AB=5tanC=3BDAC于点DBD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点PPEAC交边BC于点E,以PE为边作RtPEF,使∠EPF=90°,点F在点P的下方,且EFAB.设PEFABD重叠部分图形的面积为S(平方单位)(S0),点P的运动时间为t(秒)(t0).

1)求线段AC的长.

2)当PEFABD重叠部分图形为四边形时,求St之间的函数关系式.

3若边EF与边AC交于点Q,连结PQ,如图②

①当PQPEF的面积分成12两部分时,求AP的长.

②直接写出PQ的垂直平分线经过ABC的顶点时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点BD分别在ANAM上,连接BD

【发现】

1)如图1,若∠ABC=ADC=90°,则∠BCD=   °CBD   三角形;

【探索】

2)如图2,若∠ABC+ADC=180°,请判断CBD的形状,并证明你的结论;

【应用】

3)如图3,已知∠EOF=120°OP平分∠EOF,且OP=1,若点GH分别在射线OEOF上,且PGH为等边三角形,则满足上述条件的PGH的个数一共有   .(只填序号)

2344个以上

查看答案和解析>>

同步练习册答案