精英家教网 > 初中数学 > 题目详情
14.计算:(1+$\frac{1}{x-3}$)÷$\frac{{x}^{2}-x-2}{x-3}$.

分析 首先将括号里面通分,进而将能分解因式进行分解因式,进而化简求出即可.

解答 解:(1+$\frac{1}{x-3}$)÷$\frac{{x}^{2}-x-2}{x-3}$
=$\frac{x-2}{x-3}$×$\frac{x-3}{(x-2)(x+1)}$
=$\frac{1}{x+1}$.

点评 此题主要考查了分式的混合运算,正确运算顺序是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.国家规定“中小学生每天在校体育活动时间不低于1小时”,为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h

请根据上述信息解答下列问题:
(1)C组的人数是120人,并补全直方图;
(2)本次调查数据的中位数落在组C内;
(3)若该辖区约有24000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.据中新社北京2015年1月8日电,2014年中国粮食总产量达到586 400 000吨,用科学记数法表示为(  )
A.5.864×107B.5.864×108C.5.864×109D.5.864×1010

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解方程:$\sqrt{x+1}$+1=x.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知正比例函数的图象经过点(-1,3),那么这个函数的解析式为y=-3x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=3,sin∠BCD=$\frac{2\sqrt{5}}{5}$,点P是对角线BD上一动点,过点P作PH⊥CD,重足为H.
(1)求证:∠BCD=∠BDC;
(2)如图1,若以P为圆心,PB为半径的圆和以H为圆心、HD为半径的圆外切时,DP的长;
(3)如图2,点E在BC延长线上,且满足DP=CE,PE交DC于点F,若△ADH和△ECF相似,求DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.某商店运进120台空调准备销售,由于开展了促销活动,每天比原计划多售出4台,结果提前5天完成销售任务,则原计划每天销售多少台?
若原计划每天销售x台,则可得方程$\frac{120}{x}$-$\frac{120}{x+4}$=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知在△ABC中,射线AM∥BC,P是边BC上一动点,∠APD=∠B,PD交射线AM于点D.联结CD.AB=4,BC=6,∠B=60°.
(1)求证:AP2=AD•BP;
(2)如果以AD为半径的圆A以与A以BP为半径的圆B相切.求线段BP的长度;
(3)将△ACD绕点A旋转,如果点D恰好与点B重合,点C落在点E的位置上,求此时∠BEP的余切值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s(km)和行驶时间t(h)之间的关系,请根据图象回答下列问题:
(1)汽车共行驶的路程是多少?
(2)汽车在行驶途中停留了多长时间?
(3)汽车在每个行驶过程中的速度分别是多少?
(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?

查看答案和解析>>

同步练习册答案