【题目】如图1,在□ABCD中,,,,射线AE平分动点P以的速度沿AD向终点D运动,过点P作交AE于点Q,过点P作,过点Q作,交PM于点设点P的运动时间为,四边形APMQ与四边形ABCD重叠部分面积为
______用含t的代数式表示
当点M落在CD上时,求t的值.
求S与t之间的函数关系式.
如图2,连结AM,交PQ于点G,连结AC、BD交于点H,直接写出t为何值时,GH与三角形ABD的一边平行或共线.
【答案】(1) (2) (3)
(4)或或4s时,GH与三角形ABD的一边平行或共线
【解析】
(1)由题意得△APQ是直角三角形,∠PAQ=60°,利用正切值即可求得PQ的值;
(2)如图2,由题意可知∠D=60°,四边形APMQ为平行四边形,得∠DPQ=60°,所以△DPM是等边三角形,则DP=MP=AQ=2PA,即6-t=2t,解得t=2;
(3)如图1,3,4,分,,三种情况讨论,分别计算出三种情况下的重叠部分面积为与t的函数关系式即可;
(4)如图5,6,7,分别计算出当,或GH与BD重合,或时,三种情况下t的值即可.
如图1中,
,AE平分,
,
,
,
,
∴.
故答案为
如图2中,
四边形ABCD是平行四边形,
,
,
,,
,四边形APMQ是平行四边形,
是等边三角形,,
,
,
.
当时,如图1中,重叠部分是平行四边形APMQ,;
如图3中,当时,重叠部分五边形APSTQ,
易证△MST为等边三角形,则MT=MP﹣PS=MP﹣DP=2t﹣(6﹣t)=3t﹣6,
故.
如图4中,当时,重叠部分是四边形PSTA.
则
综上所述,.
如图5中,当时,,
点M在线段CD上,此时.
如图6中,当GH与BD重合时,作交DA的延长线于T.
在中,,,
,,
,
,
,
解得
如图7中,当时,易证B,C,Q共线,
可得是等边三角形,,
,
,
综上所述,或或4s时,GH与三角形ABD的一边平行或共线.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,高AD和BE交于点H,∠ABC=45°,BE平分∠ABC,下列结论:①∠DAC= 22.5°;②BH= 2CE; ③若连结CH,则CH⊥AB;④若CD=1,则AH=2;其中正确的有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.
(1)求证:△ABE≌△AD′F;
(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读、思考、解决问题:
(1)如图(1)两个函数和的图象交于点,的坐标是否满足这两个函数式?即是方程的解吗?是方程的解吗?答: ① (是、不是)这就是说:函数和图象的交点坐标 ② (是、不是)方程组的解;反之,方程组的解 ③ (是、不是)函数和图象的交点坐标.
(2)根据图(2)写出方程组的解是:____________
(3)已知两个一次函数和.
①求这两个函数图象的交点坐标;
②在图(3)的坐标系中画出这两个函数的图象
③根据图象写出当时,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初二班同学从学校出发去某自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20分钟后乘坐小轿车沿同一路线出行大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变小轿车司机因路线不熟错过了景点入口,再原路提速返回,恰好与大客车同时到达景点入口两车距学校的路程单位:千米和行驶时间单位:分钟之间的函数关系如图所示.
请结合图象解决下面问题:
学校到景点的路程为______千米,大客车途中停留了______分钟,______千米;
在小轿车司机驶过景点入口时,大客车离景点入口还有多远?
若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待______分钟,大客车才能到达景点入口.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,∠A=140°,∠D=80°.
(1)如图1,若∠B=∠C,试求出∠C的度数;
(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若△ABC内一点P,满足∠PAB=∠PBC=∠PCA=α,则称点P为△ABC的布洛卡点.通过研究一些特殊三角形中的布洛卡点,得到如下两个结论:
①若∠BAC=90°,则必有∠APC=90°;②若AB=AC,则必有∠APB=∠BPC.
对于这两个结论,下列说法正确的是( )
A.①对,②错B.①错,②对C.①,②均错D.①,②均对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com