精英家教网 > 初中数学 > 题目详情
已知:在四边形ABCD中,AC = BD,AC与BD交于点O,∠DOC = 60°.

(1)当四边形ABCD是平行四边形时(如图1),证明AB + CD = AC;
(2)当四边形ABCD是梯形时(如图2),AB∥CD,线段AB、CD和线段AC之间的数量关系是_____________________________;
(3)如图3,四边形ABCD中,AB与CD不平行,结论AB + CD = AC是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.
(1)见解析(2)AB+CD=AC(3)不成立,应为AB+CD>AC
(1)在?ABCD中,∵AC=BD
∴?ABCD为矩形
又∵∠DOC=60°,
∴∠AOB=60°,
又OA=OB=OC=OD,
∴AB=CD=OA=OC.
即AB+CD=AC;(3分)
(2)AB+CD=AC;
∵∠DOC=60°,
∴∠AOB=60°,
∵AC=BD,
∴△AOB,△DOC都是正三角形,
∴OA=OB=AB,OD=OC=DC
即AB+CD=AO+C0=AC;(3分)
(3)不成立,应为AB+CD>AC.
如图所示过B作BM∥AC,过C作CM∥AB,
则四边形ABMC为平行四边形,
∴CM=AB,BM=AC=BD,BM∥AC,
又∵∠DOC=60°,
∴∠DBM=∠DOC=60°
即三角形DBM为等边三角形,
∴BM=AC=DM
在△CDM中,CM+CD>DM,
即AB+CD>AC.(4分)
(1)当四边形ABCD为平行四边形时,由于AC=BD,所以平行四边形ABCD实际为矩形,若∠DOC=60°时,三角形ABO和三角形DOC均为等边三角形,所以会有AB+CD=AC;
(2)当四边形ABCD为等腰梯形时,三角形ABO和三角形CDO也是等边三角形,所以会有AB+CD=AC;
(3)不成立,过B作BM∥AC,过C作CM∥AB,连接DM.构建平行四边形后AB=CM,BM=AC=BD,由于∠DOC=60°,可知∠DBM=60°,即三角形BDM为等边三角形,所以BD=BM=DM=AC,在三角形DCM中,CM+CD>AC,即AB+CD>AC.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD中,∠BAC=90°,AB=11-x,BC=5,CD=x-5,AD=x-3,AC=4.求证:四边形ABCD为平行四边形。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

P、Q、R、S四个小球分别从正方形ABCD的四个定点A、B、C、D点出发,以同样的速度分别沿AB、BC、CD、DA的方向滚动,其终点分别是B、C、D、A。

(1)不管滚动多长时间,求证:四边形PQRS为正方形;
(2)连结对角线AC、BD、PR、SQ,你发现四条对角线有何关系?
(3)根据此图,若有四个全等的直角三角形,你能否拼成一个正方形?若这个三角形直角边为a、b,斜边问c,你能否根据面积推导出勾股定理?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD中,AB=l,BC为⊙O的直径,P是AD边上一点,BP交⊙O于点F,CF的延长线交AB于点E,连结PE.若CF=2EF,则PF的长为          

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

四边形ABCD中,若∠B+∠D=180°,∠A﹕∠B﹕∠C=1﹕2﹕3, 则∠A= °

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列四边形中,对角线互相垂直的是(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将矩形沿直线折叠,顶点恰好落在边上点处,已知,则图中阴影部分面积为             __.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在□ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是        .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在□ABCD中,AE⊥BC于E,E恰为BC的中点,.
(1)求证:AD=AE;
(2)如图2,点P在BE上,作EF⊥DP于点F,连结AF. 求证:
(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF⊥DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.

查看答案和解析>>

同步练习册答案