精英家教网 > 初中数学 > 题目详情
9.如图,在△ABC中,AB=AC=6,BC=4,⊙B与边AB相交于点D,与边BC相交于点E,设⊙B的半径为x.
(1)当⊙B与直线AC相切时,求x的值;
(2)设DC的长为y,求y关于x的函数解析式,并写出定义域;
(3)若以AC为直径的⊙P经过点E,求⊙P与⊙B公共弦的长.

分析 (1)根据勾股定理,求出AG,再由割线定理,求出BH即可;
(2)由相似得出比例式,表示出DF,CF,由勾股定理建立函数关系式;
(3)根据圆的性质求出BE,CE,再用△BQP∽△BGE,求出EG即可,

解答 解:(1)如图1,

作AG⊥BC,BH⊥AC,
∵AB=AC,AG⊥BC,
∴BG=CG=2,
∴AG=$\sqrt{A{C}^{2}-C{G}^{2}}$=4$\sqrt{2}$,
∵AG×BC=BH×AC,
∴BH=$\frac{AG×BC}{AC}$=$\frac{8\sqrt{2}}{3}$,
∴当⊙B与直线AC相切时,x=$\frac{8\sqrt{2}}{3}$;
(2)如图2,

作DF⊥BC,
∴DF∥AG,
∴$\frac{BD}{AB}=\frac{DF}{AG}$,
∴$\frac{x}{6}=\frac{DF}{4\sqrt{2}}$,
∴DF=$\frac{2\sqrt{2}}{3}$x,
∴CF=4-$\frac{1}{3}$x,
在Rt△CFD中,CD2=DE2+CF2
∴y=$\sqrt{(4-\frac{1}{3}x)^{2}+({\frac{2\sqrt{2}}{3}x)}^{2}}$=$\sqrt{x2-\frac{8}{3}x+16}$(0<x≤4),
(3)①如图3,

作PQ⊥BC,连接PE,AE,
∵EF是⊙B,⊙P的公共弦,
∵⊙P经过点E,
∴PA=PE=PC,
∴AE⊥BC,
∵AC=AB,
∴BE=CE=2,
∵PQ∥AE,且P是AC中点,
∴PQ=$\frac{1}{2}$AE=2$\sqrt{2}$,CP=3,
∴CQ=1,BQ=3,
∴BP=$\sqrt{17}$,
∵EF是⊙P,⊙B的公共弦,
∴∠BGE=90°=∠BQP(两圆的连心线垂直于公共弦)
∵∠EBG=∠PBQ
∴△BQP∽△BGE,
∴$\frac{EG}{PQ}=\frac{BE}{BP}$,
∴$\frac{EG}{2\sqrt{2}}=\frac{2}{\sqrt{17}}$,
∴EG=$\frac{4\sqrt{34}}{17}$,
∴EF=$\frac{8\sqrt{34}}{17}$;
②当点E,与点C重合时,EF=$\frac{16\sqrt{34}}{17}$.

点评 此题是圆的综合题,主要考查了勾股定理,切线的判定,相似三角形的判定和性质,解本题的关键是用圆中角的关系,判断三角形相似.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,直线y=kx+b(k≠0)与双曲线y=$\frac{m}{x}$(m≠0)相交于A(1,2),B(n,-1)两点.
(1)求双曲线的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<0<x2<x3,请直接写出y1,y2,y3的大小关系;
(3)观察图象,请直接写出不等式kx+b<$\frac{m}{x}$的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,平面直角坐标系中,点M是x轴负半轴上一定点,点P是函数y=-$\frac{1}{x}$,(x<0)上一动点,PN⊥y轴于点N,当点P的横坐标在逐渐增大时,四边形PMON的面积将会(  )
A.逐渐增大B.始终不变C.逐渐减小D.先增后减

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解不等式$\left\{\begin{array}{l}{3x+2≥-1①}\\{4x+1≤5②}\end{array}\right.$
请结合题意填空,完全本题的解答
(1)解不等式①,得x≥-1.
(2)解不等式②,得x≤1.
(3)把不等式①和②的解集在数轴上表示出来.

(4)原不等式组的解集为-1≤x≤1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.“三等分角”是古希腊几何尺规作图当中的名题,和化圆为方、倍立方问题被并列为古代数学的三大难题之一,而如今数学上已证实这个问题无解,数学家普斯借助函数给出一种“三等分角”的方法.
探究
如图1,已知:矩形PQRM的顶点P、R都在函数y=$\frac{1}{x}$(x>0)的图象上,试证明:点Q必在直线OM上;
应用
如图2,将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上,边OA与函数y=$\frac{1}{x}$(x>0)的图象交于点P,以P为原心,以2OP位半径作弧交图象于点R,分别过点P和R作x轴,y轴的平行线,两直线交于点M、点Q,
连接OM,则∠MOB=$\frac{1}{3}∠AOB$,请你用所学的知识证明:∠MOB=$\frac{1}{3}∠AOB$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:(3-π)0-2cos45°-|$\sqrt{2}$-2|+(-$\frac{1}{2}$)-2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知实数a、b(a>b)都是方程x2-x-1=0的解,则$\frac{1}{a}$$-\frac{1}{b}$=$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在四张完全相同的卡片上,分别画有等边三角形、菱形、正五边形、圆.现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下表记录了小敏等四名学生五次数学测验成绩的平均数与方差:
衡量指标小敏小芳小聪小明
平均数90859085
方差331012
根据表中数据,要从中挑选一名成绩好又比较稳定的同学参加我区的数学头脑运动会,你认为应该选(  )
A.小明B.小芳C.小聪D.小敏

查看答案和解析>>

同步练习册答案