【题目】点O为直线AB上一点,在直线AB同侧任作射线OC、OD,使得∠COD=90°
(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是__________度;
(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE的数量关系;
(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数
【答案】(1)135°;(2)∠BOD=2∠COE;(3)67.5°.
【解析】
(1)由∠COD=90°,则∠AOC+∠BOD=90°,由OE平分∠AOC,OF平分∠BOD,得∠COE+∠DOF=45°,即可求出∠EOF的度数;
(2)由题意得出∠BOD+∠AOC=90°,∠BOD=180°∠AOD,再由角平分线的定义进行计算,即可得出结果;
(3)由角平分线定义得出∠AOC=∠COE,∠COF=∠DOF=45°,再由∠BOD+∠AOC=90°,设∠EOF=x,则∠EOC=3x,∠COF=4x,根据题意得出方程,解方程即可.
解:(1)如图:
∵∠COD=90°,
∴∠AOC+∠BOD=90°,
∵OE平分∠AOC,OF平分∠BOD,
∴∠COE+∠DOF=,
∴∠EOF=∠COE+∠COD+∠DOF=45°+90°=135°;
故答案为:135°;
(2)∠BOD=2∠COE;
理由如下:如图,
∵∠COD=90°.
∴∠BOD+∠AOC=90°,
∵OE平分∠AOD,
∴∠AOE=∠DOE=∠AOD,
又∵∠BOD=180°∠AOD,
∴∠COE=∠AOE∠AOC
=∠AOD(90°∠BOD)
=(180°∠BOD)90°+∠BOD
=∠BOD,
∴∠BOD=2∠COE;
(3)如图,
∵OC为∠AOE的角平分线,OF平分∠COD,
∴∠AOC=∠COE,∠COF=∠DOF=45°,
∵∠EOC=3∠EOF,
设∠EOF=x,则∠EOC=3x,
∴∠COF=4x,
∴∠AOE=2∠COE=6x,∠DOF=4x,
∵∠COD=90°,
∴4x+4x=90°,
解得:x=11.25°,
∴∠AOE=6×11.25°=67.5°.
科目:初中数学 来源: 题型:
【题目】【问题情景】利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.
例如:张老师给小聪提出这样一个问题:
如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?
小聪的计算思路是:
根据题意得:S△ABC=BCAD=ABCE.
从而得2AD=CE,∴
请运用上述材料中所积累的经验和方法解决下列问题:
(1)【类比探究】
如图2,在ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,
求证:BO平分角AOC.
(2)【探究延伸】
如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PAPB=2AB.
(3)【迁移应用】
如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求知中学有一块四边形的空地ABCD,如下图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要250元,问学校需要投入多少资金买草皮?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,点M从A点出发在线段AB上作匀速运动(不与A、B重合),同时点N从B点出发在线段BC上作匀速运动.
(1)如图1,若M为AB中点,且DM⊥MN.请在图中找出两对相似三角形:
① ∽ _,② ∽ ,选择其中一对加以证明;
(2)①如图2,若AB=5,BC=3点M的速度为1个单位长度/秒,点N的速度为个单位长度/秒,运动的时间为t秒.当t为何值时,△DAM与△MBN相似?请说明理由;
②如果把点N的速度改为a个单位长度/秒,其它条件不变,是否存在a的值,使得△DAM与△MBN和△DCN这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫作△ABC的费马点.
(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.
①求证: △ABP∽△BCP;
②若PA=3,PC=4,求PB的长;
(2)如图②,已知锐角△ABC,分别以AB,AC为边向外作正△ABE和正△ACD,CE和BD相交于点P,连接AP.
①求∠CPD的度数;
②求证:点P为△ABC的费马点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:
①若a+b+c=0,则b2﹣4ac>0;
②若方程两根为﹣1和2,则2a+c=0;
③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;
④若b=2a+c,则方程有两个不相等的实根.其中正确的有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级有1200名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个统计图.请根据相关信息,解答下列问题:
(Ⅰ)本次参加跳绳测试的学生人数为___________,图①中的值为___________;
(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据样本数据,估计该校九年级跳绳测试中得3分的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两条直线AB,CD相交于点O,且∠AOC=∠AOD,射线OM从OB开始绕O点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s,运动时间为t秒(0<t<12,本题出现的角均小于平角)
(1)图中一定有 个直角;当t=2时,∠MON的度数为 ,∠BON的度数为 ;
(2)若OE平分∠COM,OF平分∠NOD,当∠EOF为直角时,请求出t的值;
(3)当射线OM在∠COB内部,且是定值时,求t的取值范围,并求出这个定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com