【题目】某水果商行计划购进A、B两种水果共200箱,这两种水果的进价、售价如下表所示:
价格 | 进价(元/箱) | 售价(元/箱) |
A | 60 | 70 |
B | 40 | 55 |
(1)若该商行进贷款为1万元,则两种水果各购进多少箱?
(2)若商行规定A种水果进货箱数不低于B种水果进货箱数的 ,应怎样进货才能使这批水果售完后商行获利最多?此时利润为多少?
【答案】
(1)解:设A种水果进货x箱,则B种水果进货(200﹣x)箱,
60x+40(200﹣x)=10000,
解得,x=100,
200﹣x=100,
即A种水果进货100箱,B种水果进货100箱
(2)解:设A种水果进货x箱,则B种水果进货(200﹣x)箱,售完这批水果的利润为w,
则w=(70﹣60)x+(55﹣40)(200﹣x)=﹣5x+3000,
∵﹣5<0,
∴w随着x的增大而减小,
∵x≥ ,
解得,x≥50,
当x=50时,w取得最大值,此时w=2750,
即进货A种水果50箱,B种水果150箱时,获取利润最大,此时利润为2750元
【解析】(1)根据题意可以得到相应的方程,从而可以得到两种水果各购进多少箱;(2)根据题意可以得到利润与甲种水果的关系式和水果A与B的不等式,从而可以解答本题.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)
(1)画出△ABC关于y轴对称的△A1B1C1 , 并写出点B的对应点B1的坐标;
(2)画出△ABC绕点A按逆时针旋转90°后的△AB2C2 , 并写出点C的对应点C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角形ABC的直角边AB=6,BC=8,将直角三角形ABC沿边BC的方向平移到三角形DEF的位置,DE交AC于点G,BE=2,三角形CEG的面积为13.5,下列结论:
①三角形ABC平移的距离是4; ②EG=4.5;
③AD∥CF; ④四边形ADFC的面积为6.
其中正确的结论是( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下面的说理过程补充完整:
已知:如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的关系,并说明理由.
解:∠AED=∠C.
理由:∵∠1+∠ADG=180°(平角定义),∠1+∠2=180°(已知).
∴∠2=∠ADG.(_____________)
∴EF∥AB(______________).
∴∠3=∠AED(_____________).
∵∠3=∠B(已知),
∴∠B=________(________________)
∴DE∥BC(__________________).
∴∠AED=∠C(_________________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)请直接写出点A,C,D的坐标;
(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;
(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB∥CD,
求:(1)在图(1)中∠B+∠D=?(2)在图(2)中∠B+∠E1+∠D=?(3)在图(3)中∠B+∠E1+∠E2+…+∠En﹣1+∠En+∠D=?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com