精英家教网 > 初中数学 > 题目详情
(2013•闸北区一模)已知:如图,九年级某班同学要测量校园内旗杆CH的高度,在地面的点E处用测角器测得旗杆顶点C的仰角∠CAD=45°,再沿直线EF向着旗杆方向行走10米到点F处,在点F又用测角器测得旗杆顶点C的仰角∠CBA=60°;已知测角器的高度为1.6米,求旗杆CH的高度(结果保留根号).
分析:首先假设出DB=x米,在Rt△CBD中,∠CBD=60°,进而表示出CD的长,再利用CD+BD=10求出x,进而得出CD与CH即可.
解答:解:根据题意,设DB=x米在Rt△CBD中,∠CBD=60°,
∴CD=DB•tan60°=
3
x
米,
在Rt△ACD中,∠CAD=45°,
∴CD=AD=
3
x
米,
3
x
+x=10,
解得:x=(5
3
-5)
米,
CD=
3
•(5
3
-5)=(15-5
3
)
(米),
∴CH=15-5
3
+1.6=(16.6-5
3
)
(米).
答:旗杆CH的高度是(16.6-5
3
)
米.
点评:此题主要考查了解直角三角形的应用,根据已知得出CD的长是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,二次函数y=
2
3
x2-
4
3
x-
16
3
的图象与x轴交于点A、B(点A在点B的左侧),抛物线的顶点为Q,直线QB与y轴交于点E.
(1)求点E的坐标;
(2)在x轴上方找一点C,使以点C、O、B为顶点的三角形与△BOE相似,请直接写出点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)在坡度为i=1:2.4的斜坡上每走26米就上升了
10
10
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点M、N分别在边AO和边OD上,且AM=
2
3
AO,ON=
1
3
OD,设
AB
=
a
BC
=
b
,试用
a
b
的线性组合表示向量
OM
和向量
MN

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,EC和BD相交于点O,联接DE.
(1)求证:△EOD∽△BOC;
(2)若S△EOD=16,S△BOC=36,求
AEAC
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,在△ABC中,AB=AC=15,cos∠A=
45
.点M在AB边上,AM=2MB,点P是边AC上的一个动点,设PA=x.
(1)求底边BC的长;
(2)若点O是BC的中点,联接MP、MO、OP,设四边形AMOP的面积是y,求y关于x的函数关系式,并出写出x的取值范围;
(3)把△MPA沿着直线MP翻折后得到△MPN,是否可能使△MPN的一条边(折痕边PM除外)与AC垂直?若存在,请求出x的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案