【题目】对于整式(其中m是大于的整数).
(1)若,且该整式是关于x的三次三项式,求m的值;
(2)若该整式是关于x的二次单项式,求m,n的值;
(3)若该整式是关于x的二次二项式,则m,n要满足什么条件?
【答案】(1)m=1;(2)m=-1,n=-1;(3)n=1,m为大于-2任意整数或m=-1,n≠-1或m=0,n≠4.
【解析】
(1)根据已知条件可得到关于m的方程m+2=3,解方程即可得到m的值;
(2)根据该多项式是关于x的二次单项式,可得到m+2=1,n-1=-2,据此计算即可;
(3)同样的,根据上面的分析方法,结合关于x的二次二项式的特点解答即可.
(1)因为n=2,且该多项式是关于x的三次三项式,所以原多项式变为,所以m=1,即m的值为1.
(2)因为该多项式是关于x的二次单项式,
所以m+2=1,n-1=-2
解得m=-1,n=-1
(3)因为该多项式是关于x的二次二项式,
所以①这一项不存在,原多项式是关于x的二次二项式,
则n-1=0,即n=1,m为大于-2任意整数
②若的次数为1,系数不为-2,原多项式是关于x的二次二项式,
则m=-1,n≠-1
③的次数为2,系数不为3,原多项式是关于x的二次二项式,
则m=0,n≠4.
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°,以下说法错误的是( )
A. AC=2CDB. AD=2CDC. AD=3BDD. AB=2BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数的图象与反比例函数的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.
(1)求k的值;
(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列单项式:,,,,…,,…写出第个单项式,为了解这个问题,特提供下面的解题思路.
这组单项式的系数的符号,绝对值规律是什么?
这组单项式的次数的规律是什么?
根据上面的归纳,你可以猜想出第个单项式是什么?
请你根据猜想,请写出第个,第个单项式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣2,0),B(0,4),将线段AB平移到第一象限得线段A′B′,点A′的横坐标为5,若作直线A′B′交x轴于点C(4,0).
(1)求线段AB所在直线的解析式;
(2)直线AB上一点P(m,n),求出m、n之间的数量关系;
(3)若点Q在y轴上,求QA′+QB′的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了备战学校体育节的乒乓球比赛活动,某班计划买5副乒乓球拍和若干盒乒乓球(多于5盒).该班体育委员发现在学校附近有甲、乙两家商店都在出售相同品牌的乒乓球拍和乒乓球,乒乓球拍每副售价100元,乒乓球每盒售价25元.经过体育委员的洽谈,甲商店给出每买一副乒乓球拍送一盒乒乓球的优惠;乙商店给出乒乓球拍和乒乓球全部九折的优惠.
(1)若这个班计划购买6盒乒乓球,则在甲商店付款 元,在乙商店付款 元;
(2)当这个班购买多少盒乒乓球时,在甲、乙两家商店付款相同?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD对角线BD上截取BE=BC,连接CE并延长交AD于点F,连接AE,过B作BG⊥AE于点G,交AD于点H,则下列结论错误的是( )
A. AH=DF B. S四边形EFHG=S△DCF+S△AGH
C. ∠AEF=45° D. △ABH≌△DCF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:
(1)函数的自变量x的取值范围是 ;
(2)下表是x与y的几组对应值.
... | 1 | 2 | 3 | ... | ||||||||
... | m | ... |
求m的值;
(3)如图,在平面直角坐标系中,已描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,).结合函数的图象,写出该函数的其它性质(写两条即可).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com