精英家教网 > 初中数学 > 题目详情
8.东方超市销售一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨价1元,月销售量就减少10千克.要使得月销售利润达到8000元,又要“薄利多销”,销售单价应定为多少?

分析 设销售单价定为每千克x元,根据“销售单价每涨1元,月销售量就减少10千克”,可知:月销售量=500-(销售单价-50)×10,然后根据利润=每千克的利润×销售的数量列出方程,求出x的值即可.

解答 解:设销售单价定为每千克x元时,则月销售量为:[500-(x-50)×10]=(1000-10x)千克,
每千克的销售利润是:(x-40)元,
则(x-40)(1000-10x)=8000,
解得:x1=60,x2=80.
∵要“薄利多销”,
∴x=60
答:要使月销售利润达到8000元,销售单价应定为60元.

点评 此题考查了一元二次方程的应用,关键是读懂题意,根据题目中的数量关系正确表示出月销售量.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.等腰三角形顶角为120°,底边上的高为2.5厘米,则腰长为5厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算.
(1)(-2)3×$\sqrt{(-4)^{2}}$+$\root{3}{(-4)^{3}}$×($\frac{1}{2}$)2-$\root{3}{27}$
(2)|1$-\sqrt{2}$|+$\sqrt{(\sqrt{2}-\sqrt{3})^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)($\sqrt{6}$$-\sqrt{\frac{1}{2}}$)×($\sqrt{24}$$+2\sqrt{\frac{2}{3}}$)
(2)($\sqrt{6}$$-2\sqrt{15}$)×$\sqrt{3}-6\sqrt{\frac{1}{2}}$
(3)($\sqrt{3}+1$)2
(4)$\sqrt{8}$$+\sqrt{32}$$+\sqrt{18}$$-\sqrt{24}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.菱形的两条对角线的长分别是6和8,则这个菱形的面积是(  )
A.24B.48C.10D.5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.x表示一个两位数,y表示一个三位数,如果把x放在y的左边组成一个五位数,那么这个五位数就可以表示为(  )
A.xyB.x+yC.1 000x+yD.10x+y

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B.直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q.
(1)BD的长;
(2)直线CD的解析式;
(3)点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图(1)所示,直线y=$\sqrt{3}$x+6交x、y轴于点A、B,M为y轴正半轴上一点,⊙M过A、B,交x轴于另一点C.

(1)求M点的坐标;
(2)如图 (2)P是弧BC上一动点,连PA、PB、PC,当P运动变化时,求证:PB+PC=PA;
(3)如图(3),点N是线段BM上一动点(不与B、M重合),过N点作DE⊥AB交⊙M与D、E,连接AE、BD,当点N在运动的过程中,下列两个结论:①AE+BD的值不变;②AE2+BD2的值不变.其中有一个成立,请选择并求出其值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.画出△ABC关于x轴和y轴对称的图形△A1B1C1和△A2B2C2,并指出△A1B1C1和△A2B2C2的顶点坐标.

查看答案和解析>>

同步练习册答案