精英家教网 > 初中数学 > 题目详情

如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,CD=3,CE=2.则AE的长等于


  1. A.
    5
  2. B.
    6
  3. C.
    7
  4. D.
    9
C
分析:根据等边三角形性质求出∠B=∠C=60°,AB=BC=AC,设AE=x,得出AB=BC=AC=x+2,BD=x-1,求出∠EDC=∠BAD,推出△BAD∽△CDE,得出比例式,求出即可.
解答:∵三角形ABC是等边三角形,
∴∠B=∠C=60°,AB=BC=AC,
设AE=x,则AB=BC=AC=x+2,BD=x+2-3=x-1,
∵∠ADE=60°,
∴∠B=∠ADE,
∵∠ADC=∠B+∠BAD=∠ADE+∠EDC,
∴∠EDC=∠BAD,
∵∠B=∠C,
∴△BAD∽△CDE,
=(相似三角形的对应边成比例),
=
解得:x=7,
即AE=7,
故选C.
点评:本题考查了等边三角形性质,相似三角形的性质和判定的应用,关键是求出△BAD∽△CDE,题目具有一定的代表性,但有一定的难度,主要考查学生运用性质进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,D是AC的中点,延长BC到点E,使CE=CD,AB=10cm.
(1)求BE的长;
(2)△BDE是什么三角形,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,BF是高,D是BF上一点,且OF=AF,作OE⊥BF,垂足为D,且OE=OB,连AE、AO、BE,求证:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步练习册答案