精英家教网 > 初中数学 > 题目详情

【题目】如图1,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连接BE,DF.请在图2中用实线补全图形,这时DF=BE还成立吗?请说明理由.

【答案】DF=BE还成立.理由见解析

【解析】

由旋转角得到∠FAD=∠EAB,再利用SAS证明△ADF≌△ABE,最后由全等三角形的性质可得结果.

DF=BE还成立.理由:

∵四边形ABCD是正方形,△AEF是等腰直角三角形,

∴AD=AB,AF=AE,∠FAE=∠DAB=90°.

∴∠FAE-∠DAE=∠DAB-∠DAE,即∠FAD=∠EAB.

在△ADF与△ABE中,

AF=AE,∠FAE=∠DAB=90°,AD=AB,

∴△ADF≌△ABE(SAS).

∴DF=BE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解下列各题:

(1)已知∠A,∠B,∠C是锐角三角形ABC的三个内角,且满足(2sinA-)2=0,求∠C的度数;

(2)已知tanα的值是方程x2x-2=0的一个根,求式子的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.

△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.

(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在 Rt△ABC 中,∠C=Rt∠,AC=2BC,AB=5,D、E 分别在 AB、AC 上,且 AE ,DE∥BC.

(1)如图(1),将△ADE 沿射线 DA 方向平移,得到△ A1 D1 E1 ,当 AD1 多大时,四边形 AA1 E1 E 为菱形;

(2)如图(2),将△ADE 绕 A 点顺时针旋转 度( 00 1800 )得到△AD2E2

①连结 CE2 , BD2 ,求:的值;

②连结 CE2 , BE2 若△ ACE2 是直角三角形,求:△ ABE 2 的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠A=60°,E,F分别是AB,AD的中点,DE,BF相交于点G,连接BD,CG,有下列结论:①∠BGD=120° ;②BG+DG=CG;③△BDF≌△CGB;④.其中正确的结论有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠1∠2,则不一定能使△ABD≌△ACD的条件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD(四边相等,四个角都是直角)的边长为4,点P从点A出发,以每秒1个单位长度的速度沿射线AD向点D运动;点Q从点D同时出发,以相同的速度沿射线AD方向向右运动,当点P到达点D时,点Q也停止运动,连接BP,过点PBP的垂线交过点Q平行于CD的直线l于点EBECD相交于点F,连接PF,设点P运动时间为ts),

1)求PBE的度数;

2)当t为何值时,PQF是以PF为腰的等腰三角形?

3)试探索在运动过程中PDF的周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.

(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;

(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知B港口位于A观测点北偏东45°方向,且其到A观测点正北风向的距离BM的长为10km,一艘货轮从B港口沿如图所示的BC方向航行4km到达C处,测得C处位于A观测点北偏东75°方向,则此时货轮与A观测点之间的距离AC的长为( )km.

A.8 B.9 C.6 D.7

查看答案和解析>>

同步练习册答案