精英家教网 > 初中数学 > 题目详情
15.下列实数中,有理数是(  )
A.$\sqrt{2}$B.$\root{3}{4}$C.$\frac{π}{2}$D.0.101001

分析 根据有理数是有限小数或无限循环小数,可得答案.

解答 解:$\sqrt{2}$,$\root{3}{4}$,$\frac{π}{2}$是无理数,
0.101001是有理数,
故选D

点评 本题考查了实数,有理数是有限小数或无限循环小数,无理数是无限不循环小数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图1,若双曲线y=$\frac{5}{x}$(x>0)与此正方形的边有交点,则a的取值范围是$\sqrt{5}$≤a≤$\sqrt{5}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列命题正确的是(  )
A.相等的角是对顶角B.a、b、c是直线,若a∥b,b∥c,则a∥c
C.同位角相等D.a、b、c是直线,若a⊥b,b⊥c,则a⊥c

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,直线y=kx-3与x轴、y轴分别相交于B、C两点,且OC=2OB
(1)求B点的坐标和k的值.
(2)若点A(x,y)是直线y=kx-3上在第一象限内的一个动点,当A 在运动的过程中,试写出△AOB的面积S与x的函数关系式,(不要求写出自变量的取值范围).
(3)探究:在(2)的条件下
①当A运动到什么位置时,△ABO的面积为$\frac{9}{4}$,并说明理由.
②在①成立的情况下,x轴上是否存在一点P,使△AOP是等腰三角形?若存在,请直接写出满足条件的所有P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数i,使其满足i2=-1(即x2=-1方程有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i,i4=(i22=(-1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4n•i,同理可得i4n+2=-1,i4n+3=-i,i4n=1,那么,i+i2+i3+i4+…+i2016+i2017的值为(  )
A.0B.1C.-1D.i

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,矩形ABOE的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2$\sqrt{3}$,反比例函数y=$\frac{k}{x}$(x>0)的图象经过OA的中点C,交AB于点D.
(1)求反比例函数的解析式;
(2)连接CD,求四边形CDBO的面积;
(3)AE与反比例函数交于点F,连接OF,△AOF是等腰三角形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知在平面直角坐标系中,O为坐标原点,点A的坐标为(a,0),点B的坐标为(b,2),点C的坐标为(c,d),其中a、b、c满足方程组$\left\{\begin{array}{l}{a-2b+c=12}\\{2a-b-c=3}\end{array}\right.$
(1)若点C到x轴的距离为6,则d的值为±6;
(2)连接AB,线段AB沿y轴方向平移,线段AB扫过的面积为15,求平移后点B的纵坐标;
(3)连接AB、AC、BC,若△ABC的面积小于等于10,求d的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列因式分解正确的是(  )
A.-2x2-2=-2(x+1)(x-1)B.x2-4x+4=(x-2)2C.x2+9=(x+3)2D.x2+3x+1=x(x+3)+1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若关于x的不等式|x-3|+|x-4|<a有实数解,则实数a的取值范围是a≥1.

查看答案和解析>>

同步练习册答案