科目:初中数学 来源:三点一测丛书九年级数学上 题型:059
拿一张纸对折后,剪成两个全等的三角形,把这两个三角形一起放到图中△ABC的位置上.试一试,如果其中一个三角形不动,怎样移动另一个三角形,能够得到图中的各图形:
通过实际操作可以知道:(1)把△ABC沿直线BC移动线段BC那样长的距离,可以变到△ECD的位置;(2)以BC为轴把△ABC翻折,可以变到△DBC的位置;(3)以点A为中心,把△ABC旋转,可以变到△AED的位置.这些图形中的两个三角形之间有这样的关系,其中一个三角形是由另一个三角形按平行移动、翻折或旋转等方法得到的,像这样按一定方法把一个图形变成另一个图形叫做图形变换.
经过图形变换,图形的一些性质改变了,而另一些性质仍然保留下来.上面三个图形经过变换,图形的位置变化了,但形状大小都没有改变,即变换前后的图形全等,像这样只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换.
利用图形变换,可以为研究几何图形提供方便.
试一试,你能用两个全等三角形拼成图中的各种图形吗?这些图形都可以看成是一个三角形经过全等变换得到的.
查看答案和解析>>
科目:初中数学 来源:三点一测丛书八年级数学上 题型:044
平移、对称与旋转是常见的几何变换,它们都是把一个几何图形F1变换成为一个几何图形F2,而且这种变换仅改变图形的位置,不改变图形的形状和大小.
例如:把△ABC沿直线BC平行移动,可以变到△ECD的位置(如图1);以BC为轴把△ABC翻折,可以变到△BDC的位置(如图2);绕A点把△ABC逆时针旋转,可以变到△AED的位置(如图3).
像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.
如图,在正方形ABCD中,E是AD的中点,F是BA的延长线上一点,AF=AB.
(1)你认为可以通过平移、翻折、旋转中的哪一种方法,使△ABE变到△ADF的位置,怎样变化?
(2)根据全等变换的意义,你能否知道线段BE与DF之间的关系.
查看答案和解析>>
科目:初中数学 来源:数学教研室 题型:044
(1)求证:△ABE≌△ADF.
(2)阅读下列材料:如图②,把△ABC沿直线平移线段BC的长度,可以变到△ECD的位置;如图③,以BC为轴把△ABC翻折180°,可以变到△DBC的位置;如图④,以点A为中心,把△ABC旋转180°,可以变到△AED的位置,像这样其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.
图① 图② 图③ 图④
请回答下列问题:
(1)在图①中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE变到△ADF的位置?
(2)指出图①中线段BE与DF之间的关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com