精英家教网 > 初中数学 > 题目详情
观察下列等式:
12-02=1+0=1;
22-12=2+1=3;
32-22=3+2=5;
42-32=4+3=7;

若字母n表示自然数,把你观察到的规律用字母n的式子表示出来为:
(n+1)2-n2=2n+1
(n+1)2-n2=2n+1
分析:观察几个等式可知,等式左边为相邻两数的平方差,右边的结果为两个底数的和,由此得出一般规律.
解答:解::∵12-02=1=1+0;22-12=3=2+1;32-22=5=3+2;42-32=7=4+3,
∴(n+1)2-n2=(n+1)+n=2n+1.
故答案为:(n+1)2-n2=2n+1(n为自然数).
点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力,本题的关键是观察等式左边两底数的关系及等式右边的结果与等式左边两底数的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、观察下列等式:12-02①,22-12②,32-22③,42-32④,…
(1)按此规律猜想出第⑦个算式;
(2)请用含自然数n的等式表示这种规律.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式:
1
2
+1
=
1×(
2
-1)
(
2
+1)(
2
-1)
=
2
-1
2-1
=
2
-1,
1
3
+
2
=
1×(
3
-
2
)
(
3
+
2
)(
3
-
2
)
=
3
-
2
3-2
=
3
-
2

同理可得:
1
4
+
3
=
4
-
3
,…
从计算结果中找出规律,并利用这一规律计算
1
2
+1
+
1
3
+
2
+
1
4
+
3
+…
1
2002
+
2001
)(
2002
+1)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•珠海)观察下列等式:
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,

以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.
(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:
①52×
275
275
=
572
572
×25;
63
63
×396=693×
36
36

(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•市南区模拟)观察下列等式:
①12=1;
②2+3+4=32
③3+4+5+6+7=52
④4+5+6+7+8+9+10=72
请你根据观察得到的规律判断式子1006+1007+1008+…+3016=
20112
20112

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列等式:
1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4


(1)猜想:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接写出下列各式的结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2009×2010
=
2009
2010
2009
2010

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1

查看答案和解析>>

同步练习册答案