【题目】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,≈1.73).
科目:初中数学 来源: 题型:
【题目】为了节约用水,某城市用水标准为:居民每户用水未超过7立方米时,每立方米收水费1.00元,并加收每立方米0.2元的城市污水处理费;超过7立方米的部分每立方米收水费1.50元,并加收每立方米0.4元的城市污水处理费.李明家1月份用水10立方米,2月份用水6立方米,请你计算他家这两个月共缴水费多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有( )
①AP=BP; ②2BP=AB; ③AB=2AP; ④AP+PB=AB.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为1的小正方形网格中,△AOB的顶点均在格点上.
(1)B点关于y轴的对称点坐标为 ;
(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,A1的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )
A. SAS B. ASA C. AAS D. SSS
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,≈1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的弦,过B作BC⊥AB交⊙O于点C,过C作⊙O的切线交AB的延长线于点D,取AD的中点E,过E作EF∥BC交DC 的延长线与点F,连接AF并延长交BC的延长线于点G.
求证:(1)FC=FG (2)=BCCG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.
(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);
(2)我们知道,满足的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com