精英家教网 > 初中数学 > 题目详情
17.如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB、△PBC、△PDA的面积分别为S1、S2、S3、S4,以下判断:
①PA+PB+PC+PD的最小值为10;
②若△PAB≌△PDC,则△PAD≌△PBC;
③若S1=S2,则S3=S4
④若△PAB∽△PDA,则PA=2.4
其中正确的是①②③④.

分析 ①当点P是矩形ABCD两对角线的交点时,PA+PB+PC+PD的值最小,根据勾股定理可得PA+PB+PC+PD的最小值,即可判断;
②根据全等三角形的性质可得PA=PC,PB=PD,那么P在线段AC、BD的垂直平分线上,即P是矩形ABCD两对角线的交点,易证△PAD≌△PBC,即可判断;
③易证S1+S3=S2+S4,所以若S1=S2,则S3=S4,即可判断;
④根据相似三角形的性质可得∠PAB=∠PDA,∠PAB+∠PAD=∠PDA+∠PAD=90°,利用三角形内角和定理得出∠APD=180°-(∠PDA+∠PAD)=90°,同理可得∠APB=90°,那么∠BPD=180°,即B、P、D三点共线,根据三角形面积公式可得PA=2.4,即可判断.

解答 解:①当点P是矩形ABCD两对角线的交点时,PA+PB+PC+PD的值最小,根据勾股定理得,AC=BD=5,所以PA+PB+PC+PD的最小值为10,故①正确;
②若△PAB≌△PCD,则PA=PC,PB=PD,所以P在线段AC、BD的垂直平分线上,即P是矩形ABCD两对角线的交点,所以△PAD≌△PBC,故②正确;
③若S1=S2,易证S1+S3=S2+S4,则S3=S4,故③正确;
④若△PAB~△PDA,则∠PAB=∠PDA,∠PAB+∠PAD=∠PDA+∠PAD=90°,∠APD=180°-(∠PDA+∠PAD)=90°,同理可得∠APB=90°,那么∠BPD=180°,B、P、D三点共线,P是直角△BAD斜边上的高,根据面积公式可得PA=2.4,故④正确.
故答案为①②③④.

点评 本题考查了轴对称-最短路线问题,全等三角形、相似三角形的性质,勾股定理,矩形的性质,线段垂直平分线的判定等知识,综合性较强,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC的两边AB,AC上向△ABC外作正方形ABEF,ACGH,过点A作BC的垂线分别交BC于点D,交FH于点M,求证:FM=MH.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若a=3,a-b=2,则a2-ab的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如果把分式$\frac{{3n}^{2}}{m-n}$中的m和n都扩大3倍,那么分式的值(  )
A.不变B.扩大3倍C.缩小3倍D.扩大9倍

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,正方形ABCD中,E在BC上,F在AB上且∠FDE=45°,△DEC按顺时针方向转动一个角度后成△DGA.
(1)图中的旋转中心是点D;
(2)旋转了90度;
(3)求∠GDF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,已知:在△ABC中,∠ACB=90°,AC=BC,△ABC内一点P将三个内角分成6个角(即∠1、∠2、∠3、∠4、∠5、∠6)
(1)若∠1=∠3=∠5,求S△APC:S△ABC的值;
(2)如图2,已知:AP=AC
①若PB=PC,求证:∠1=2∠4;
②若∠1=30°,求证:PB=PC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在3×4长方形网格中,黑色部分的图形构成一个轴对称图形.现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是$\frac{4}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.不等式组$\left\{\begin{array}{l}{2x<6}\\{x+1≥-4}\end{array}\right.$的解集是-5≤x<3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.在Rt△ABC中,∠C=90°,若tanA=$\frac{5}{12}$,则sinA=(  )
A.$\frac{12}{13}$B.$\frac{5}{12}$C.$\frac{13}{5}$D.$\frac{5}{13}$

查看答案和解析>>

同步练习册答案