精英家教网 > 初中数学 > 题目详情
15.已知BD、CE是△ABC的两条高,直线BD、CE相交于点H.
(1)若∠A=100°,如图,求∠DHE的度数;
(2)若△ABC中∠A=50°,直接写出∠DHE的度数是50°或130°.

分析 (1)根据四边形的内角和是360°,求得∠DHE的度数;
(2)分∠A是锐角时△ABC是锐角三角形,钝角三角形讨论求解即可.

解答 解:(1)∵BD、CE是△ABC的两条高,
∴∠HDA=∠HEA=90°,
∴∠DHE=180°-∠A=80°;
(2)当∠A=50°时,
①△ABC是锐角三角形时,∠DHE=180°-50°=130°;
②△ABC是钝角三角形时,∠DHE=∠A=50°;
故答案为:50°或130°.

点评 本题考查了三角形、多边形的内角和,解答本题的关键是熟练记忆:三角形的内角和为180°,四边形的内角和为360°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为(  )
A.13B.$\frac{15}{2}$C.$\frac{27}{2}$D.12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:(a+2-$\frac{5}{a-2}$)•$\frac{2a-4}{3-a}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,四边形ABCD是菱形,AB=2,∠ABC=30°,点E是射线DA上一动点,把△CDE沿CE折叠,其中点D的对应点为D′,连接D′B,若△D′BC为等边三角形,则DE=2$\sqrt{3}$-2或$\sqrt{3}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.观察下列各个等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….
(1)你能从中推导出计算12+22+32+42+…+n2的公式吗?请写出你的推导过程;
(2)请你用(1)中推导出的公式来解决下列问题:
已知:如图,抛物线y=-x2+2x+3与x、y轴的正半轴分别交于点A、B,将线段OAn等分,分点从左到右依次为A1、A2、A3、A4、A5、A6、…、An-1,分别过这n-1个点作x轴的垂线依次交抛物线于点B1、B2、B3、B4、B5、B6、…、Bn-1,设△OBA1、△A1B1A2、△A2B2A3、△A3B3A4、…、△An-1Bn-1A的面积依次为S1、S2、S3、S4、…、Sn.
①当n=2013时,求s1+s2+s3+s4+…+s2013的值;
②试探究:当n取到无穷无尽时,题中所有三角形的面积和将是什么值?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.方程x(x+1)=5(x+1)的根是(  )
A.-1B.5C.1 或5D.-1或5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:

(1)在第n个图中,第一横行共n+3 块瓷砖,第一竖列共有n+2 块瓷砖;(均用含n的代数式表示)铺设地面所用瓷砖的总块数为n2+5n+6或(n+2)(n+3);(用含n的代数式表示,n表示第n个图形)
(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;
(3)黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需要花多少钱购买瓷砖?
(4)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.为了调动同学们的学习积极性,某班班主任陈老师在班级管理中采用了奖励机制,每次期中期末考试后都会进行表彰奖励.期中考试后,陈老师花了300元购买甲、乙两种奖品用于奖励进步显著学生及成绩特别优秀学生.期末考试后,陈老师再次去购买奖品时,发现甲奖品每件上涨了6元,乙奖品每件上涨了12元,结果购买相同数量的甲、乙两种奖品却多花了120元.设陈老师每次购买甲奖品x件,乙奖品y件.
(1)请直接写出y与x之间的函数关系式:y=10-$\frac{1}{2}x$.
(2)若x=8,且这两种奖品不再调价.若陈老师再次去购买奖品,且所买甲奖品比前两次都少1件,则他最多买几件乙奖品,才能把奖品总费用控制在300元以内?
【备注:已知陈老师第一次购买奖品发现,甲奖品比乙奖品便宜,两种奖品单价(元)都在30以内且为偶数】

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,己知AB∥DC,且AB=CD,BF=DE,说明AE∥CF,AF∥CE的理由.

查看答案和解析>>

同步练习册答案