精英家教网 > 初中数学 > 题目详情

【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.

1)怎样围才能使矩形场地的面积为750m2

2)能否使所围矩形场地的面积为810m2,为什么?

3)怎样围才能使围出的矩形场地面积最大?最大面积为多少?请通过计算说明.

【答案】1)当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2;(2)不能使所围矩形场地的面积为810m2;理由见解析;(3)当所围矩形的长为40m、宽为20m时,能使矩形的面积最大,最大面积为800 m2

【解析】

1)设所围矩形ABCD的长ABx米,则宽AD 80x)米,根据矩形的面积公式建立方程求出解即可;

2)根据矩形的面积公式建立方程,根据根的判别式得出方程无实数解,从而得出结论;

3)设矩形的面积为S,由矩形的面积公式可以得出Sx的关系,由关系式的性质就可以得出结论.

1)设所围矩形ABCD的长ABx米,则宽AD 80x)米,

由题意,得x80x)=750

解得:x150x230

∵墙的长度不超过45m

x30

80x)=25

答:当所围矩形的长为30m、宽为25m时,能使矩形场地的面积为750m2

2)不能.

理由:由x80x)=810,整理得:x280x+16200

∵△=b24ac=(﹣8024×1×1620=﹣800

∴方程没有实数根.

因此不能使所围矩形场地的面积为810m2

3)设矩形的面积为S,所围矩形ABCD的长ABx米,

由题意,得Sx80x)=﹣x402+800

∴当x40时,S最大800,且符合题意,

80x)=20

答:当所围矩形的长为40m、宽为20m时,能使矩形的面积最大,最大面积为800 m2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴于AB两点,交y轴于点C.直线经过点AC

1)求抛物线的解析式;

2)点P是抛物线上一动点,过点Px轴的垂线,交直线AC于点M,设点P的横坐标为m

①当是直角三角形时,求点P的坐标;

②作点B关于点C的对称点,则平面内存在直线l,使点MB到该直线的距离都相等.当点Py轴右侧的抛物线上,且与点B不重合时,请直接写出直线的解析式.(kb可用含m的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数ykx+b和反比例函数y图象相交于A24),Bn,﹣2)两点.

1)求一次函数和反比例函数的解析式;

2)观察图象,直接写出不等式kx+b0的解集;

3)点Cab),Dac)(a2)分别在一次函数和反比例函数图象上,且满足CD2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,一次函数yax+c和二次函数y=﹣ax2+c(a≠c)的图象大致为(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,一次函数yax+c和二次函数y=﹣ax2+c(a≠c)的图象大致为(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线ymx24mx+2m+1x轴交于Ax10),Bx20)两点,与y轴交于点C,且x2x12

1)求抛物线的解析式;

2E是抛物线上一点,∠EAB2OCA,求点E的坐标;

3)设抛物线的顶点为D,动点P从点B出发,沿抛物线向上运动,连接PD,过点PPQPD,交抛物线的对称轴于点Q,以QD为对角线作矩形PQMD,当点P运动至点(5t)时,求线段DM扫过的图形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两校分别有一男一女共4名教师报名到农村中学支教.

(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是

(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:

①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )

A. ②④⑤⑥ B. ①③⑤⑥ C. ②③④⑥ D. ①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO中,ABOB,OB=,AB=1,把ABO绕点O旋转150°后得到A1B1O,则点A1的坐标为

A.(﹣1, B.(﹣1,)或(﹣2,0) C.,﹣1)或(0,﹣2) D.,﹣1)

查看答案和解析>>

同步练习册答案