【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.
(1)怎样围才能使矩形场地的面积为750m2?
(2)能否使所围矩形场地的面积为810m2,为什么?
(3)怎样围才能使围出的矩形场地面积最大?最大面积为多少?请通过计算说明.
【答案】(1)当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2;(2)不能使所围矩形场地的面积为810m2;理由见解析;(3)当所围矩形的长为40m、宽为20m时,能使矩形的面积最大,最大面积为800 m2.
【解析】
(1)设所围矩形ABCD的长AB为x米,则宽AD为 (80x)米,根据矩形的面积公式建立方程求出解即可;
(2)根据矩形的面积公式建立方程,根据根的判别式得出方程无实数解,从而得出结论;
(3)设矩形的面积为S,由矩形的面积公式可以得出S与x的关系,由关系式的性质就可以得出结论.
(1)设所围矩形ABCD的长AB为x米,则宽AD为 (80﹣x)米,
由题意,得x(80﹣x)=750,
解得:x1=50,x2=30,
∵墙的长度不超过45m,
∴x=30,
∴(80﹣x)=25,
答:当所围矩形的长为30m、宽为25m时,能使矩形场地的面积为750m2;
(2)不能.
理由:由x(80﹣x)=810,整理得:x2﹣80x+1620=0.
∵△=b2﹣4ac=(﹣80)2﹣4×1×1620=﹣80<0,
∴方程没有实数根.
因此不能使所围矩形场地的面积为810m2;
(3)设矩形的面积为S,所围矩形ABCD的长AB为x米,
由题意,得S=x(80﹣x)=﹣(x﹣40)2+800,
∴当x=40时,S最大=800,且符合题意,
∴(80﹣x)=20,
答:当所围矩形的长为40m、宽为20m时,能使矩形的面积最大,最大面积为800 m2.
科目:初中数学 来源: 题型:
【题目】如图,抛物线交x轴于A,B两点,交y轴于点C.直线经过点A,C.
(1)求抛物线的解析式;
(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.
①当是直角三角形时,求点P的坐标;
②作点B关于点C的对称点,则平面内存在直线l,使点M,B,到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线的解析式.(k,b可用含m的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=kx+b和反比例函数y=图象相交于A(2,4),B(n,﹣2)两点.
(1)求一次函数和反比例函数的解析式;
(2)观察图象,直接写出不等式kx+b﹣<0的解集;
(3)点C(a,b),D(a,c)(a>2)分别在一次函数和反比例函数图象上,且满足CD=2,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=mx2﹣4mx+2m+1与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=2.
(1)求抛物线的解析式;
(2)E是抛物线上一点,∠EAB=2∠OCA,求点E的坐标;
(3)设抛物线的顶点为D,动点P从点B出发,沿抛物线向上运动,连接PD,过点P做PQ⊥PD,交抛物线的对称轴于点Q,以QD为对角线作矩形PQMD,当点P运动至点(5,t)时,求线段DM扫过的图形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两校分别有一男一女共4名教师报名到农村中学支教.
(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 .
(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:
①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )
A. ②④⑤⑥ B. ①③⑤⑥ C. ②③④⑥ D. ①③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为
A.(﹣1,) B.(﹣1,)或(﹣2,0) C.(,﹣1)或(0,﹣2) D.(,﹣1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com