精英家教网 > 初中数学 > 题目详情
7、如图,正方形ABCD中,E是BC上一点,过点E作AE的垂线分别交CD,AB的延长线于点F,G.求证:BE=BG+FC.
分析:作辅助线,构造全等三角形,将BG+FC转化成一条线段,证明三角形的全等.
解答:证明:过点C作GF的平行线交AG的延长线于点H,(1分)
则得GHCF是平行四边形.
∴∠H=∠AGE,GH=FC.(2分)
∵∠AGE+∠GAE=90°,
∠AEB+∠GAE=90°,
∴∠AEB=∠AGE=∠H.(3分)
∠ABE=∠CBH=Rt∠,AB=BC,
∴△ABE≌△CBH.(4分)
∴BE=BH=BG+GH=BG+FC.(5分)
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案