【题目】在平面直角坐标系中,直线与x轴、y轴相交于B、C两点,动点D在线段OB上,将线段DC绕着点D顺时针旋转90°得到DE,过点E作直线l⊥x轴于H,过点C作CF⊥y轴,交直线l于F,设点D的横坐标为m.
(1)请直接写出点B、C的坐标;
(2)当点E落在直线BC上时,求tan∠FDE的值;
(3)对于常数m,探究:在直线l上是否存在点G,使得∠CDO=∠DFE+∠DGH?若存在,请求出点G的坐标;若不存在,请说明理由.
【答案】(1)B(5,0),C(0,3);(2);(3)当0<m<3时,存在∠CDO=∠DFE+∠DGH,此时G(3+m,)或(3+m,﹣).
【解析】
试题分析:(1)分别令x=0和y=0,即可求得;
(2)证得四边形COHF是矩形,然后证得△OCD≌△HDE,从而证得△DHF是等腰直角三角形,得出∠HDE+∠FDE=45°,由∠OCD+∠ECF=45°,得出∠ECF=∠FDE,进一步得出∠OBC=∠FDE,解直角三角形即可求得tan∠OBC==,从而得出tan∠FDE=.
(3)根据三角形全等的性质要使∠CDO=∠DFE+∠DGH,只要△EDF∽△EGD,所以只要,即DE2=EFEG,由(2)可知:DE2=CD2=OD2+OC2=m2+32,EF=3﹣m,然后分三种情况讨论即可求得.
试题解析:(1)∵直线与x轴、y轴相交于B、C两点,∴令y=0,则0=,解得x=5,令x=0,则y=3,∴B(5,0),C(0,3);
(2)如图1,∵∠CDE=90°,∴∠CDO+∠EDH=90°,∵∠CDO+∠OCD=90°,∴∠OCD=∠EDH,在△OCD和△HDE中,∵∠OCD=∠HDE,∠COD=∠DHE=90°,CD=DE,∴△OCD≌△HDE(AAS),∴DH=OC=3,∵直线l⊥x轴于H,CF⊥y轴,∴四边形COHF是矩形,∴FH=OC=3,∴DH=HF,∴∠HDF=45°,即∠HDE+∠FDE=45°,∵CD=DE,∠CDE=90°,∴∠DCE=45°,∴∠OCD+∠ECF=45°,∴∠ECF=∠FDE,∵∠OBC=∠ECF,∵tan∠OBC==,∴tan∠FDE=.
(3)如图2,由(2)可知△OCD≌△HDE,∴∠CDO=∠DEH,要使∠CDO=∠DFE+∠DGH,只要∠DEH=∠DFE+∠DGH,在△DEF中,∠DEH=∠EDF+∠DFE,∴只要∠EDF=∠DGF,∵∠FED=∠GED,只要△EDF∽△EGD,∴只要,即DE2=EFEG,由(2)可知:DE2=CD2=OD2+OC2=m2+32,EF=3﹣m,∴当0<m<3时,EG==,HO=3+m,此时,G(3+m,),根据对称可知,当0<m<3时,此时还存在G′(3+m,﹣);
当m=3时,此时点E和点F重合,∠DFE不存在,当3≤m≤5时,点E在F的上方,此时,∠DFE>∠DEF,此时不存在∠CDO=∠DFE+∠DGH,综上,当0<m<3时,存在∠CDO=∠DFE+∠DGH,此时G(3+m,)或(3+m,﹣).
科目:初中数学 来源: 题型:
【题目】如图,抛物线(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.
(1)求此抛物线的解析式;
(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;
(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4.
(1)求经过A、B、C三点的抛物线的解析式;
(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )
A.50°
B.51°
C.51.5°
D.52.5°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com