精英家教网 > 初中数学 > 题目详情

【题目】如图,将矩形ABCD折叠使AC重合,折痕交BCE,交ADF,连接AECFAC.

(1)求证:四边形AECF为菱形;

(2)AB4BC8①求菱形AECF的边长;②求折痕EF的长.

【答案】(1)证明见解析;(2)①5;②2.

【解析】试题分析:1)根据折叠的性质得OA=OCEFACEA=EC再利用ADAC得到∠FAC=ECA则可根据“ASA”判断△AOF≌△COE得到OF=OE加上OA=OCACEF于是可根据菱形的判定方法得到四边形AECF为菱形;
2①设菱形的边长为x,则BE=BCCE=8xAE=xRtABE中,根据勾股定理得然后解方程即可得到菱形的边长;
②先在RtABC中,利用勾股定理计算出然后在RtAOE中,利用勾股定理计算出

试题解析:证明:(1)∵矩形ABCD折叠使AC重合,折痕为EF

OA=OCEFACEA=EC

ADAC

∴∠FAC=ECA

在△AOF和△COE中,

∴△AOF≌△COE

OF=OE

OA=OCACEF

∴四边形AECF为菱形;

(2)①设菱形的边长为x,则BE=BCCE=8xAE=x

RtABE,

解得x=5

即菱形的边长为5

②在RtABC,

RtAOE中,AE=5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】梅岭中学为了解课程选修的情况,对报名参加艺术欣赏”,“科技制作”,“数学思维”,“阅读写作这四个选修项目的学生(每人限报一课)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图,请根据图中提供的信息,解答下面的问题:

(1)此次共调查了______名学生,扇形统计图中艺术欣赏部分的圆心角是______度;

(2)请把这个条形统计图补充完整;

(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修科技制作项目.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG∥DB,交CB的延长线于点G.

(1)求证:DE∥BF;

(2)若∠G=90,求证:四边形DEBF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读材料)“九宫图”源于我国古代夏禹时期的“洛书”1所示,是世界上最早的矩阵,又称“幻方”,用今天的数学符号翻译出来,“洛书”就是一个三阶“幻方”2所示

(规律总结)观察图1、图2,根据“九宫图”中各数字之间的关系,我们可以总结出“幻方”需要满足的条件是______;若图3,是一个“幻方”,则______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.
(1)求证:△ABE≌△CDF;
(2)若AB=DB,猜想:四边形DFBE是什么特殊的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知代数式,当时,该代数式的值为-1.

1)求的值。

2)已知当时,该代数式的值为-1,求的值。

3)已知当时,该代数式的值为9,试求当时该代数式的值。

4)在第(3)小题已知条件下,若有成立,试比较的大小。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知n边形的内角和θ=n-2×180°.

1甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;

2n边形变为n+x边形,发现内角和增加了360°,用列方程的方法确定x.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,制作某金属工具先将材料煅烧6分钟温度升到800℃,再停止煅烧进行锻造,8分钟温度降为600℃;煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时温度y(℃)与时间x(min)成反比例函数关系;该材料初始温度是32℃.
(1)分别求出材料煅烧和锻造时y与x的函数关系式;
(2)根据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小李对初三(1)班全体同学的业余兴趣爱好(第一爱好)进行了一次调查,她根据采集到的数据,绘制了下面的图1和图2.

请你根据图中提供的信息,解答下列问题:

(1)初三(1)班共有学生________人;

(2)在图1中,将书画部分的图形补充完整;

(3)在图2中,球类部分所对应的圆心角的度数________度;爱好音乐的人数占本班学生数的百分数是________;爱好书画的人数占本班学生数的百分数是________;“其它的人数占本班学生数的百分数是________.

查看答案和解析>>

同步练习册答案