精英家教网 > 初中数学 > 题目详情

如图,AB是⊙O的直径,AB=4,过点B作⊙O的切线,C是切线上一点,且BC=2,P是线段OA上一动点,连结PC交⊙O于点D,过点P作PC的垂线,交切线BC于点E,交⊙O于点F,连结DF交AB于点G.

(1)当P是OA的中点时,求PE的长;

(2)若∠PDF=∠E,求△PDF的面积.

 

【答案】

(1);(2)2或.

【解析】

试题分析:(1)当P是OA的中点时,根据切线的性质,可证得△CBP∽△PBE,从而得到,在Rt△PBE中,由勾股定理可求得PE的长;(2)分弦DF不是直径和弦DF恰为直径两种情况讨论即可.

试题解析:(1)当P是OA的中点时,PB=3.

∵CE是⊙O的切线,∴AB⊥CE.

又∵CP⊥PE,∠CPB=∠E,∴△CBP∽△PBE.

,∴.

∴在Rt△PBE中,.

(2)在Rt△PDG中,由∠PDF=∠E=∠CPB,可知∠GPF=∠GFP,

∴GD=GP=GF.

直径AB平分弦DF,有两种可能.:

①弦DF不是直径,如图①,则AB⊥DF,于是PD=PF,∠GPD=∠GDP=45º.

∴BP=BC=2=BO,点P与点O重合.∴SPDF×2×2=2.

②弦DF恰为直径,如图②,则点P即为点A.而BC=2,BP=DF=4,∴BE=8,CE=10.

∴SPCE×10×4=20,∴由△PCE∽△PFD得,SPDF.

考点:1.动点问题;2. 切线的性质;3.相似三角形的判定和性质;4.勾股定理;5.垂径定理;6.三角形的面积;7.分类思想的应用.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案