精英家教网 > 初中数学 > 题目详情

【题目】(发现问题)爱好数学的小明在做作业时碰到这样的一道题目:

如图①,点O为坐标原点,⊙O的半径为1,点A(2,0).动点B在⊙O上,连结AB,作等边△ABC(A,B,C为顺时针顺序),求OC的最大值

(解决问题)小明经过多次的尝试与探索,终于得到解题思路:在图①中,连接OB,以OB为边在OB的左侧作等边三角形BOE,连接AE.

(1)请你找出图中与OC相等的线段,并说明理由;

(2)求线段OC的最大值.

(灵活运用)

(3)如图②,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.

(迁移拓展)

(4)如图③,BC=4,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请直接写出AC的最值.

【答案】(1)结论:OC=AE,理由见解析;(2)OC的最大值为3;(3)最大值为2+3;P(2﹣);(4)AC的最大值为2+2, 2﹣2

【解析】

1)结论:,只要证明即可;

2)利用三角形的三边关系即可解决问题;

3)连接,将绕着点顺时针旋转得到,连接,得到是等腰直角三角形,根据全等三角形的性质得到,根据当在线段的延长线时,线段取得最大值,即可得到最大值为,过轴于,根据等腰直角三角形的性质,即可得到结论;

4)如图4中,以为边作等边三角形,由,推出,推出欲求的最大值,只要求出的最大值即可,由定值,,推出点在以为直径的上运动,由图象可知,当点上方,时,的值最大.

(1)如图①中,结论:OC=AE,

理由:∵△ABC,△BOE都是等边三角形,

∴BC=BA,BO=BE,∠CBA=∠OBE=60°,

∴∠CBO=∠ABE,

∴△CBO≌△ABE,

∴OC=AE.

(2)在△AOE中,AE≤OE+OA,

∴当E、O、A共线,

∴AE的最大值为3,

∴OC的最大值为3.

(3)如图1,连接BM,

∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,

∴PN=PA=2,BN=AM,

∵A的坐标为(2,0),点B的坐标为(5,0),

∴OA=2,OB=5,

∴AB=3,

∴线段AM长的最大值=线段BN长的最大值,

∴当N在线段BA的延长线时,线段BN取得最大值(如图2中)

最大值=AB+AN,

∵AN=AP=2

∴最大值为2+3;

如图2,过P作PE⊥x轴于E,

∵△APN是等腰直角三角形,

∴PE=AE=

∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣

∴P(2﹣).

(4)如图4中,以BC为边作等边三角形△BCM,

∵∠ABD=∠CBM=60°,

∴∠ABC=∠DBM,∵AB=DB,BC=BM,

∴△ABC≌△DBM,

∴AC=MD,

∴欲求AC的最大值,只要求出DM的最大值即可,

∵BC=4=定值,∠BDC=90°,

∴点D在以BC为直径的⊙O上运动,

由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2+2

∴AC的最大值为2+2

当点A在线段BD的右侧时,同法可得AC的最小值为2﹣2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某反比例函数图象的一支经过点A23)和点B(点B在点A的右侧),作BCy轴,垂足为点C,连结ABAC

1)求该反比例函数的解析式;

2)若ABC的面积为6,求直线AB的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(如图,将边长为4cm的正方形纸片ABCD沿EF折叠(EF分别在边ABCD),使点B落在AD边上的点 M处,点C落在点N处,MNCD交于点P 连接EP

如图,若MAD边的中点,①△AEM的周长=_________cm求证:EP=AE+DP

随着落点MAD边上取遍所有的位置(M不与AD重合)△PDM的周长是否发生变化?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的角平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.

(1)求证:DE是⊙O的切线;

(2)若∠CAB=60°,DE=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小西“过直线外一点作这条直线的垂线”的尺规作图过程.

已知:直线l及直线l外一点P.

求作:直线PQ,使得PQl.

做法:如图,

①在直线l的异侧取一点K,以点P为圆心,PK长为半径画弧,交直线l于点AB

②分别以点AB为圆心,大于AB的同样长为半径画弧,两弧交于点Q(P点不重合);

③作直线PQ,则直线PQ就是所求作的直线.

根据小西设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明.

证明:∵PA= QA= ,

PQl( )(填推理的依据).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ ABC中,∠ACB=90°,AD平分BACAD的垂直平分线EFAD于点E,交BC的延长线于点F,交AB于点G,交AC于点H

(1)依题意补全图形;

(2)求证:∠BAD=∠BFG

(3)试猜想ABFBFD之间的数量关系并进行证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).

请根据图表中的信息,解答下列问题:

(1)写出表中a的值,将频数分布直方图补全;

(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?

(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将一个量角器与一张等边三角形(△ABC)纸片放置成轴对称图形,CDAB,垂足为D,半圆(量角器)的圆心与点D重合,此时,测得顶点C到量角器最高点的距离CE=2cm,将量角器沿DC方向平移1cm,半圆(量角器)恰与△ABC的边ACBC相切,如图2,AB的长为__________cm.

查看答案和解析>>

同步练习册答案