精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6
2
,那么AC=
 
分析:在AC上截取CG=AB=4,连接OG,根据B、A、O、C四点共圆,推出∠ABO=∠ACO,证△BAO≌△CGO,推出OA=OG=6
2
,∠AOB=∠COG,得出等腰直角三角形AOG,根据勾股定理求出AG,即可求出AC.
解答:精英家教网
解:在AC上截取CG=AB=4,连接OG,
∵四边形BCEF是正方形,∠BAC=90°,
∴OB=OC,∠BAC=∠BOC=90°,
∴B、A、O、C四点共圆,
∴∠ABO=∠ACO,
∵在△BAO和△CGO中
BA=CG
∠ABO=∠ACO
OB=OC

∴△BAO≌△CGO,
∴OA=OG=6
2
,∠AOB=∠COG,
∵∠BOC=∠COG+∠BOG=90°,
∴∠AOG=∠AOB+∠BOG=90°,
即△AOG是等腰直角三角形,
由勾股定理得:AG=
(6
2
)
2
+(6
2
)
2
=12,
即AC=12+4=16,
故答案为:16.
点评:本题主要考查对勾股定理,正方形的性质,直角三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,能熟练地运用这些性质进行推理和计算是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,以Rt△ABC的一条直角边AB为直径作⊙O,与AC交于点F,在AB的延长线上取一精英家教网点E,连接EF与BC交于点D,且使得DF=CD.
(1)求证:FE是⊙O的切线;
(2)如果sin∠A=
1
2
,AE=
3
,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点E,点D是BC边的中点,连接ED.
(1)试说明:ED是⊙O的切线;
(2)若⊙O 直径为6,线段BC长为8,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,以Rt△ABC的三边为直径分别向外作三个半圆S1,S2,S3,若S2=32π;S3=18π,则斜边上半圆的面积S1=
50π
50π

查看答案和解析>>

同步练习册答案