二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )
A.﹣3 B. 3 C. ﹣6 D. 9
科目:初中数学 来源: 题型:
“6”字形图中,FM是大⊙O的直径,BC与大⊙O相切于B,
OB与小⊙O相交于点A,AD∥BC,CD∥BH∥FM,DH⊥BH于H,
设∠FOB=α,OB=4,BC=6.
(1)求证:AD为小⊙O的切线;
(2)在图中找出一个可用α表示的角,并说明你这样表示的理由;(根据所写结果的正确性及所需推理过程的难易程度得分略有差异)
(3)当α=30º时,求DH的长。(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是( )
A.<2>和<3> B. <1>和<2> C. <2>和<4> D. <1>和<4>
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知△ABC的三个顶点的坐标分别为A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).
(1)请直接写出与点B关于坐标原点O的对称点B1的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;
(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知,如图,抛物线与轴交于点C,与轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com