精英家教网 > 初中数学 > 题目详情

在直角坐标系中,正方形OABC的两边OC、OA分别在x轴、y轴上,A点的坐标为(0、4).
(1)将正方形OABC绕点O顺时针旋转30°,得到正方形ODEF,边DE交BC于G.求G点的坐标;
(2)如图,⊙O1与正方形ABCO四边都相切,直线MQ切⊙O1于点P,分别交y轴、x轴、线段BC于点M、N、Q.求证:O1N平分∠MO1Q.

(3)若H(-4、4),T为CA延长线上一动点,过T、H、A三点作⊙O2,AS⊥AC交O2于F.当T运动时(不包括A点),AT-AS是否为定值?若是,求其值;若不是,说明理由.

解:(1)连接OG,
∵∠AOD=∠FOC=30°,由轴对称可得∠DOG=∠COG=30°,
又∴OC=4,
∵CG=OC•tan∠COG=4×=
∴G(4,);

(2)∵BQ∥AM,
∴∠BQM+∠AMQ=180°,
根据切线长定理,∠O1QM+∠Q1MQ=180°×=90°,
∴∠MO1Q=180°-90°=90°,
由切线长定理∠NO1Q=45°,
∴O1M平分∠MO1Q.

(3)AQ-AF的值是定值为4
在AT上取点V,使TV=AS,即AT-AS=AV,
∵AS⊥AC,
∴∠THS=∠TAS=90°,
∵H(-4、4),A(0、4),
∴AH⊥AO;
又∵∠OAC=45°,
∴∠TAH=45°,
∵∠THS=∠TAS=90°,
∴∠TSH=45°,
∴HT=HS;
又∠HTV=∠HAS,TV=AS,
∴△HTV≌△HSA,
∴△HAV为等腰直角三角形,
∴AT-AS=AV=,AH=4
分析:(1)求出旋转角∠AOD、∠FOC的度数为30°,进而求出∠GOC的度数,再利用三角函数求出G点坐标;
(2)由切线长定理证得∠MO1Q=90°,由切线长定理或其他方法证得∠NO1Q=45°,O1N平分∠MO1Q;
(3)在AT上取点V,使TV=AS,构造出全等三角形△HTV≌△HSA,判断出△HAV为等腰直角三角形,
求得AT-AS=AV=为定值.
点评:(1)此题不仅要熟悉旋转角,还要知道旋转不变性,并联系特殊三角形用勾股定理解答;
(2)运用切割线定理是解答此题的关键;
(3)构造全等三角形,比作辅助线难度要大,但确是一种有效的解题方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在直角坐标系中,正方形ABOD的边长为a,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OM的解析式为y=2x,直线CN过x轴上的一点C(-
3
5
a
,0)且与OM平行,交AD于点E,现正方形以每秒为
a
10
的速度匀速沿x轴正方向右平行移动,设运动时间为t秒,正方形被夹在直线CE和OF间的部分为S,
(1)求点A、B、D的坐标;
(2)求梯形ECOD的面积;
(3)0≤t<4时,写出S与t的函数关系式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,正方形ABOD的边长为5,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OE的解析式为y=2x,直线CF过x轴上一点C(-3,0)且与OE平行.现正方形以每秒
12
的速度匀速沿x轴的正方向平行移动,设精英家教网运动时间为t秒,正方形被夹在直线OE与CF间的部分的面积为S.
(1)当0≤t<4时,写出S与t的函数关系;
(2)当4≤t≤5时,写出S与t的函数关系,在这个范围内S有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,O是坐标原点,正方形OABC的顶点A恰好落在双曲线y=
3
x
(x>0)上,且OA与x轴正方向的夹角为30°.则正方形OABC的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•本溪一模)在直角坐标系中,放置一个如图的直角三角形纸片AOB,已知OA=2,∠AOB=30°,D、E两点同时从原点O出发,D点以每秒
3
个单位长度的速度沿y轴正方向运动,E点以每秒1个单位长度的速度沿x轴正方向运动,设D、E两点的运动时间为t秒(t≠0).
(1)在点D、E的运动过程中,直线DE与线段OA垂直吗?请说明理由;
(2)当时间t在什么范围时,直线DE与线段OA有公共点?
(3)若直线DE与直线OA相交于点F,将△OEF沿DE向上折叠,设折叠后△OEF与△AOB重叠部分面积为S,请直接写出S与t的函数关系式,并写出t为何值时,折叠面积最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为(  )

查看答案和解析>>

同步练习册答案