【题目】如图(1),将两块直角三角尺的直角顶点C叠放在一起,
(1)若∠DCE=25°,∠ACB=;若∠ACB=150°,则∠DCE=;
(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;
(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.
【答案】(1)155°,30°;(2)∠ACB+∠DCE=180°(或∠ACB与∠DCE互补),理由见解析;
(3)∠DAB+∠CAE=120°,理由见解析.
【解析】
试题分析:(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.
试题解析:(1)∵∠ECB=90°,∠DCE=25°,∴∠DCB=90°-25°=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠DCB=155°.∵∠ACB=150°,∠ACD=90°,∴∠DCB=150°-90°=60°,∵∠ECB=90°,∴∠DCE=90°-60°=30°.故答案为155°,30°;
(2)猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补).
理由:∵∠ECB=90°,∠ACD=90°,∴∠ACB=∠ACD+∠DCB=90°+∠DCB,∠DCE=∠ECB-∠DCB=90°-∠DCB,∴∠ACB+∠DCE=180°;
(3)∠DAB+∠CAE=120°.
理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.
科目:初中数学 来源: 题型:
【题目】(1)计算:(a-2)(a2+2a+4)= ,
(2x-y)(4x2+2xy+y2)= .
(2)上面的整式乘法计算结果很简单,由此又发现一个新的乘法公式: _________________________(请用含a、b的字母表示)
(3)下列各式能用你发现的乘法公式计算的是( )
A.(a-3)(a2-3a+9) B.(2m-n)(2m2+2mn+n2)
C.(4-x)(16+4x+x2) D.(m-n)(m2+2mn+n2)
(4)直接用公式计算: =
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O……依此规律,得到等腰直角三角形A2 017OB2 017.则点B2 017的坐标( )
A. (22 017,-22 017) B. (22 016,-22 016) C. (22 017,22 017) D. (22 016,22 016)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从去年发生非洲猪瘟以来,各地猪肉紧缺,价格一再飙升,为平稳肉价,某物流公司受命将300吨猪肉运往某地,现有A,B两种型号的车共19辆可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨.在不超载的条件下,19辆车恰好把300吨猪肉一次运完,则需A,B型车各多少辆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,点A、B的坐标分别是(a,0),(b,0)且+|b-2|=0.
(1)求a、b的值;
(2)在y轴上是否存在点C,使三角形ABC的面积是12?若存在,求出点C的坐标;若不存在,请说明理由.
(3)已知点P是y轴正半轴上一点,且到x轴的距离为3,若点P沿平行于x轴的负半轴方向以每秒1个单位长度平移至点Q,当运动时间t为多少秒时,四边形ABPQ的面积S为15个平方单位?写出此时点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面推理过程:
如图,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代换).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代换).
∴AB∥CD(________________________________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,将一块等腰直角三角板ABC放在第一象限,斜靠在两条坐标轴上,∠ACB=900,且A(0,4),点C(2,0),BE⊥x轴于点E,一次函数y=x+b经过点B,交y轴于点D。
(1)求证;△AOC≌△CEB
(2)求△ABD的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com