【题目】如图①,在平面直角坐标系中,A(a,0),C(b,4),且满足(a+4)2+=0,过C作CB⊥x轴于B.
(1)求三角形ABC的面积.
(2)若线段AC与y轴交于点Q(0,2),在y轴上是否存在点P,使得三角形ABC和三角形QCP的面积相等,若存在,求出P点坐标;若不存在,请说明理由.
(3)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图②,求∠AED的度数.
【答案】(1)16;(2)存在,P点坐标为(0,10)或(0,-6);(3)45°
【解析】(1)根据非负数的性质即可得出结果;
(2)设P点坐标为(0,y),根据S△PQC=S△ABC=16列出方程即可求出点P的坐标;
(3)过点E作EF∥AC,通过平行的性质可证∠AED=∠CAE+∠BDE ,再通过角平分线的性质和等量代换即可求出结果.
,
解:(1)∵(a+4)2+=0,
又∵(a+4)2+≥0,≥0
∴,
∴,
∴A(-4,0),C(4,4),B(4,0),
∴S△ABC=ABBC=×8×4=16.
(2)设P点坐标为(0,y),
∵Q(0,2),
∴PQ=|y-2|,
当S△PQC=S△ABC=16时,
|y-2|×4=16,
解得y=10或-6,
∴P(0,10)或(0,-6).
(3)如图2中:过点E作EF∥AC,
∵AC∥BD
∴EF∥BD
∴∠CAE=∠AEF,∠EDB=∠DEF
∴∠CAE+∠EDB=∠AEF+∠DEF
∴∠AED=∠CAE+∠BDE
∵AE、DE分别平分∠CAB和∠ODB
∴∠CAE=∠CAB,∠BDE=∠ODB,
∵AC∥BD
∴∠ODB=∠AQD
∴∠AED=(∠CAB+∠ODB)=(∠CAB+∠AQD)=×90°=45°.
科目:初中数学 来源: 题型:
【题目】如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.
(Ⅰ)△ABC的面积等于 ;
(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,AD的中点,
且∠ABM=∠BAM,连接BM,MN,BN.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.
(1)求两种球拍每副各多少元?
(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,二次函数y=x2+bx﹣2017的图象与x轴交于点A(x1,0)、B(x2,0)两点,则当x=x1+x2时,则y的值为( )
A. 2019 B. 2017 C. 2018 D. ﹣2017
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,则四人中成绩最稳定的是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.若生产的A种产品的数量与B种产品的数量之比不超过3:2,则生产结束后剩下的原料共__________kg.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com