精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,放置一个如图所示的直角三角形纸片AOB,已知OA=2,∠AOB=30度.D、E两点同时从原点O出发,D点以每秒个单位长度的速度沿x轴正方向运动,E点以每秒1个单位长度的速度沿y轴正方向运动,设D、E两点的运动时间为t秒.
(1)点A的坐标为______
【答案】分析:(1)由题意可知:OA=2,∠AOB=30°,则根据直角三角形中30°所对的边是斜边的一半,则AB=1,根据勾股定理可以求得OB=;所以可以求得点A与点B的坐标.
(2)如果连接DE,那么根据D、E两点的速度可得出OD:OE=,因此直角三角形ODE中,∠OED=60°,而已知了∠AOB=30°,即可得出OA⊥DE.
(3)本题只需考查直线DE过O,A两点时,t的取值即可.
(4)本题要分三种情况进行讨论.
①当0≤t≤时,重合部分是三角形.
②当<t≤时,重合部分是四边形.
③当<t≤时,重合部分是三角形.
可据此来求出S,t的关系式,以及S的最大取值.
解答:解:(1)由题意可知:OA=2,∠AOB=30°,则根据直角三角形中30°所对的边是斜边的一半,则AB=1,根据勾股定理可以求得OB=;则点A的坐标为(1,),点B的坐标为(0,);

(2)垂直.
理由:连接DE,直角三角形ODE中,tan∠OED==
∴∠OED=60°.
∵∠BOA=30°,
∴OA⊥ED.

(3)因为DE总是垂直于OA运动,因此可以看做直线DE沿OA方向进行运动.因此两者有公共点的取值范围就是O?A之间.
当DE过O点时,t=0.
当DE过A点时,直角三角形OAD中,OA=2,∠ODA=30°,因此OD=4,t=
因此t的取值范围是0≤t≤

(4)当0≤t≤时,S=t2;Smax=
<t≤时,S=-t2--t)2=-(t-2+,Smax=
<t≤时,S=(2-t)2,S无最大值;
综上所述S的最大值为
点评:本题中对于点的运动要分类进行讨论.分类讨论是初中数学重要的思想方法,难点是一要想到用讨论的方法进行求解.二是讨论界限要确定不要漏解和重复.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案