精英家教网 > 初中数学 > 题目详情

如图,已知点A (0,4) 和点B (3,0)都在抛物线上.

(1)求n

(2)向右平移上述抛物线,记平移后点A的对应点为D,点B的对应点为C,若四边形A BCD为菱形,求平移后抛物线的表达式;

(3)记平移后抛物线的对称轴与直线AC 的交点为点E,试在轴上找点F,使得以点CE、F为顶点的三角形与△    ABE相似。

 

(1) (2)y=(x-4)2+(3)(3,0),(4,0)

解析:(1)由---------1分,得---------2分

(2) ∵四边形ABCD为菱形,AB=5   ∴AD=5---------1分

 ∴y=m(x+1-5)2+n-m     =(x-4)2+---------2分

(3) ∵C(8,0)       ∴直线AC解析式为y=x+4    ∴E(4,2),CE=---------1分

∵AC=        ∴AE

∵以点C、E、F为顶点的三角形与△ABE相似

∴F不在BC延长线上,故F在C的左侧-  -1分

时,           ∴F(3,0) ---------1分

          ∴F(4,0) ---------1分     ∴F(4,0)或(3,0)

(1)已知了抛物线图象上A、B两点的坐标,将它们代入抛物线的解析式中,即可求得m、n的值.

(2)根据A、B的坐标,易求得AB的长;根据平移的性质知:四边形一定为平行四边形,若四边形为菱形,那么必须满足AB=AD,由此可确定平移的距离,根据“左加右减”的平移规律即可求得平移后的抛物线解析式.

(3)易求得直线AC的解析式,联立平移后的抛物线对称轴,可得到E点的坐标,进而可求EC、AE的长;所以以点C、E、F为顶点的三角形与△ABE相似,可分两种情况考虑:①,②,根据上述两种不同的相似三角形所得不同的比例线段,即可求得不同的CF长,进而可求得F点的坐标

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知点D是∠ABC的平分线上一点,点P在BD上,PA⊥AB,PC⊥BC,垂足分别为A,C、下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点C为反比例函数y=-
6x
上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点A、B、C、D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为(  )
A、
3
2
B、
3
-
3
C、2
3
D、4
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点D为△ABC中AC边上一点,且AD:DC=3;4,设
BA
=
a
BC
b

(1)在图中画出向量
BD
分别在
a
b
方向上的分向量;
(2)试用
a
b
的线性组合表示向量
BD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点C为AB上一点,AC=12cm,CB=
23
AC,D、E分别为AC、AB的中点.
(1)图中共有
10
10
线段.
(2)求DE的长.

查看答案和解析>>

同步练习册答案