精英家教网 > 初中数学 > 题目详情
15.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.
(1)请猜想:DC与BE的数量关系,并给予证明;
(2)求证:DC⊥BE.

分析 (1)根据等腰直角三角形的性质,可以得出△ABE≌△ACD,得出对应边相等即可;
(2)由△ABE≌△ACD可以得出∠B=∠ACD-45°,进而得出∠DCB=90°,就可以得出结论.

解答 (1)解:DC=BE;
理由如下:∵△ABC与△AED均为等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∠ABC=∠ACB=45°,
∴∠BAC+∠CAE=∠EAD+∠CAE.
即∠BAE=∠CAD,
在△ABE与△ACD中,$\left\{\begin{array}{l}{AB=AC}&{\;}\\{∠BAE=∠CAD}&{\;}\\{AE=AD}&{\;}\end{array}\right.$,
∴△ABE≌△ACD(SAS),
∴DC=BE;

(2)证明:∵△ABE≌△ACD,
∴∠ACD=∠ABE=45°,
又∵∠ACB=45°,
∴∠BCD=∠ACB+∠ACD=90°,
∴DC⊥BE.

点评 本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,垂直的判定的运用,解答时证明三角形全等是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.如图,已知△ABC的三个顶点的坐标分别为A(-2,0),B(-1,4),C(2,0),请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标(3,4),(-5,4),(1,-4).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.甲、乙两车从A地出发前往B地.在整个行程中,甲、乙两车离开A地的距离 y(km)与行驶的时间t(h)的关系如图所示,则A、B两地的距离为360km.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=$\sqrt{5}$,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
(1)证明:当∠AOF=90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,AF与CE总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时∠AOF度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知关于x的方程x+2k=5(x+k)+1的解是负数,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同,甲、乙两人每天共加工35个零件,设甲每天加工x个A型零件.
(1)求甲、乙每天各加工零件多少个?
(2)根据市场预测,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求甲、乙每天加工的零件所获得的总利润P(元)与m的函数关系式,并求P的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC,使四边形ABCD是菱形.(只需添加一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)计算:a3(1-8a3)-a10÷a2+(-3a42
(2)先化简,再求值:($\frac{x+2}{x-2}$-$\frac{4x}{{x}^{2}-4}$)÷$\frac{1}{{x}^{2}-4}$,其中x=-2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,△ABC的顶点和点O均在网格图的格点上,将△ABC绕点O逆时针旋转90°,得到△A1B1C1
(1)请画出△A1B1C1
(2)以点O为圆心,$\sqrt{5}$为半径作⊙O,请判断直线AA1与⊙O的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案