精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC,∠ABC=90°,CO平分∠ACB交于AB于O,D为AC上一点,且CD=CB,E为AO上一点,OE=OB,连接DE
①试判断直线DE与OC的位置关系,并证明你的结论
②若AD=4,CD=6,求AE的长.
分析:(1)DE∥OC.通过△CDO≌△CBO推知OD=OB,∠DOC=∠BCO;然后利用角平分线的性质以及等量代换证得内错角∠EDO=∠DOC;
(2)在直角△ABC中根据勾股定理求得AB=8;然后在直角△ADO中利用勾股定理来求AO的长度.
解答:解:(1)直线DE与OC相互平行.理由如下:
如图连接OD.
∵CO平分∠ACB,
∴∠1=∠2.
∵在△CDO与△CBO中,
CD=CB
∠1=∠2
CO=CO

∴△CDO≌△CBO(SAS),
∴OD=OB,∠4=∠6.
又∵OE=OB,
∴∠3=∠5.
∵∠4+∠6=180°-∠DOE=∠3+∠5,
∴2∠4=2∠3,即∠4=∠3,
∴DE∥OC,即直线DE与OC相互平行;

(2)∵AD=4,CD=6,
∴AC=10.
∵在Rt△ABC,∠ABC=90°,
∴根据勾股定理求得AB=
AC2-BC2
=8.
设AE=x.则OD=OE=
1
2
(AB-AE)=
8-x
2

在直角△ADO中,AD2+OD2=OA2,即42+(
8-x
2
2=(x+
8-x
2
2
解得x=2,即AE=2.
点评:本题考查了全等三角形的判定与性质、勾股定理.解答(2)题时,借助于方程求得线段AE的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案