精英家教网 > 初中数学 > 题目详情
(1)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-,x1•x2=
根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求+的值.
(2)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
x123
y5212
点A(x1,y1)、B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,试判断y1与y2的大小关系.
【答案】分析:(1)根据根与系数的关系得出x1+x2=-=-6,x1•x2==3,进而将原式变形求出即可;
(2)根据图表得出2<y1<5,1<y2<2,即可得出答案.
解答:解;(1)∵x1、x2是方程x2+6x+3=0的两实数根,
∴x1+x2=-=-6,x1•x2==3,
+====10;

(2)根据图表可得出:∵当0<x1<1时,2<y1<5,当2<x2<3时,1<y2<2,
∴y1>y2
点评:此题主要考查了根与系数的关系以及利用图表得出正确数据信息,利用已知得出2<y1<5,1<y2<2是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料,并解答问题:
我们已经学过了一元一次不等式的解法,对于一些特殊的不等式,我们用作函数图象的方法求出它的解集,这也是《数学新课程标准》中所要求掌物的内容.例如:如何求不等式
3
x
>x+2的解集呢我们可以设y1=
3
x
,y2=x+2.然后求出它们的交点的坐标,并在同一直角坐标系中画出它们的函数图象,通过看图,可以发现此不等式的解集是“x<-3或0<x<1”
用上面的知识解决问题:求不等式x2-x>x+3的解集.
(1)设函数y1=
 
;y2=
 

(2)两个函数图象的交点坐标为
 

(3)在所给的直角坐标系中画出两个函数的图象(不要列表).
(4)观察发现:不等式x2-x>x+3的解集为
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=
12
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)在(2)的条件下,设抛物线的对称轴分别交AB、x轴于点D、M,连接PA、PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(4)在(2)的条件下,设P点的横坐标为x,△PAB的铅垂高为h、面积为S,请分别写出h和S关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•赤峰)阅读材料:
(1)对于任意两个数a、b的大小比较,有下面的方法:
当a-b>0时,一定有a>b;
当a-b=0时,一定有a=b;
当a-b<0时,一定有a<b.
反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.
(2)对于比较两个正数a、b的大小时,我们还可以用它们的平方进行比较:
∵a2-b2=(a+b)(a-b),a+b>0
∴(a2-b2)与(a-b)的符号相同
当a2-b2>0时,a-b>0,得a>b
当a2-b2=0时,a-b=0,得a=b
当a2-b2<0时,a-b<0,得a<b
解决下列实际问题:
(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,每张B5纸的面积为y,且x>y,张丽同学的用纸总面积为W1,李明同学的用纸总面积为W2.回答下列问题:
①W1=
3x+7y
3x+7y
(用x、y的式子表示)
W2=
2x+8y
2x+8y
(用x、y的式子表示)
②请你分析谁用的纸面积最大.
(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:

方案一:如图2所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a1=AB+AP.
方案二:如图3所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a2=AP+BP.
①在方案一中,a1=
(3+x)
(3+x)
km(用含x的式子表示);
②在方案二中,a2=
x2+48
x2+48
km(用含x的式子表示);
③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•房县模拟)问题:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),我们把|x1-x2|+|y1-y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).如:P(-2,3)、Q(2,5)则P、Q两点的直角距离为d(P,Q)=|-2-2|+|3-5|=6
请根据根据以上阅读材料,解答下列问题:
(1)计算M(-2,7),N(-3,-5)的直角距离d(M,N)=
13
13

(2)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,则x与y之间满足的关系式为
|x|+|y|=1
|x|+|y|=1

(3)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离,试求点M(4,2)到直线y=x+2的直角距离.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料后回答问题:
[材料一]苍南新闻网报道:2009年12月20日,D5586次动车从浙江苍南站出发驶向上海南站,这标志着苍南火车站成为全国第一个开行始发动车的县级站.D5586次动车时刻表部分如下:
苍南(11:40开)-->宁波(14:00开)-->杭州(15:50开)-->上海南(17:25到)
(假设沿途各站停靠时间不计)
[材料二]苍南至上海南站的铁路里程约为716千米.D5586次动车在宁波至杭州段的平均速度比苍南至宁波段的少54千米/时,在杭州至上海段的平均速度是苍南至宁波段的
4
5

问题:
(1)设D5586次动车在苍南至宁波段的平均速度为x千米/时,则宁波至杭州段的里程是
11
6
(x-54)
11
6
(x-54)
千米(用含x的代数式表示).
(2)求该动车在杭州至上海段的平均速度.

查看答案和解析>>

同步练习册答案