精英家教网 > 初中数学 > 题目详情
(2013•徐州模拟)如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为(  )
分析:先根据题意得出△ABC是一个顶角为45°的等腰三角形,即∠A=45°,AC=AB,过C作CD⊥AB,垂足为D,根据三角函数定义求出AC,AB,然后就可以求出△ABC面积.
解答:解:∵纸条的两边互相平行,
∴∠1=∠BAC=45°,
∴∠ABC=
180°-∠1
2
=
180°-45°
2
=67.5°,
同理可得,∠ACB=67.5°,
∴△ABC是一个顶角为45°的等腰三角形,即∠A=45°,AC=AB.
作CD⊥AB,垂足为D,则CD=1.
∵sin∠A=
CD
AC

∴AC=
1
sin45°
=
2
=AB,
∴S△ABC=
1
2
×AB×CD=
2
2

∴折叠后重叠部分的面积为
2
2
cm2
故选B.
点评:本题考查的是图形折叠的性质,熟知图形翻折不变性的性质是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•徐州模拟)若圆锥的高为8,底面半径为6,则圆锥的侧面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.
(1)结合以上信息及图2填空:图2中的m=
2
5
2
5

(2)求B、C两点的坐标及图2中OF的长;
(3)若OM是∠AOB的角平分线,且点G与点H分别是线段AO与射线OM上的两个动点,直接写出HG+AH的最小值,请在图3中画出示意图并简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)分解因式:9a2-b2=
(3a+b)(3a-b)
(3a+b)(3a-b)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)
1
4
的倒数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.
(1)求港口A到海岛B的距离;
(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?

查看答案和解析>>

同步练习册答案