精英家教网 > 初中数学 > 题目详情
已知二次函数y=-x2+4x+5,完成下列各题:
(1)将函数关系式用配方法化为的形式,并写出它的顶点坐标、对称轴.
(2)求出它的图象与坐标轴的交点坐标.
(3)在直角坐标系中,画出它的图象.

(4)根据图象说明:当x为何值时,y>0;当x为何值时,y<0.
(1),顶点(2,9),对称轴x=2 
(2)与x轴交点(5,0)(-1,0),与y轴交点(0,5)
(3)图略
(4)当-1<x<5时,y>0,当x>5或x<-1时,y<0。
(1)用配方法整理得到顶点式即可;
(2)让函数值为0,求得一元二次方程的两个解即为这个二次函数的图象与坐标轴的交点的横坐标,让x=0,可求得抛物线与y轴的交点坐标;
(3)找到与y轴的交点,x轴的交点,对称轴,即可画出大致图象;
(4)找到x轴上方、下方函数图象所对应的自变量的取值即可.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

二次函数当时有最大值为4,且它的图象形状与相同,则该二次函数的解析式为     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.

(1)求出二次函数的解析式;
(2)当点P在直线OA的上方时,用含m的代数式表示线段PC的长,并求线段PC的最大值;
(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,请直接写出所有P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线与交于A(-1,0)、B(3,0)两点,与轴交于点C(0,3),求抛物线的解析式;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线与x轴和y轴分别交于点A和点B,抛物线的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.

(1)如图,当点M与点A重合时,求:
①抛物线的解析式;(4分)
②点N的坐标和线段MN的长;(4分)
(2)抛物线在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.(4分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,长方形中,cm,cm,现有一动点出发以2cm/秒的速度,沿矩形的边回到点,设点运动的时间为秒.

(1)当秒时,求的面积;
(2)当为何值时,点与点的距离为5cm?
(3)当为何值时,以线段的长度为三边长的三角形是直角三角形,且是斜边.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个直角三角形的两条直角边长的和为20㎝,其中一直角边长为x㎝,面积为y㎝2,则y与x的函数的关系式是( )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线的部分图象如图,则抛物线的对称轴为直线x=       ,满足y<0的x的取值范围是       ,将抛物线   平移   个单位,则得到抛物线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

定义符号表示与自变量所对应的函数值。例如对于函数,当时,对应的函数值,则可以写为:。在二次函数中,若对任意实数都成立,那么下列结论错误的是(   )

查看答案和解析>>

同步练习册答案