【题目】如图,AD是△ABC中∠BAC的平分线,过A作AE⊥AD交BC的延长线于点E,M为DE的中点.
(1)求证:ME2=MCMB;
(2)如果BA2=BDBE,求证:
【答案】(1)见解析;(2)见解析.
【解析】
(1)证明△AMC∽△BMA即可解决问题.
(2)由△AMC∽△BMA,推出=,推出=,推出=,再证明△BAC∽△BMA,推出=,推出AB2=BCBM,即可解决问题.
(1)证明:∵AE⊥AD,
∴∠DAE=90°,
∵DM=ME,
∴AM=MD=ME,
∴∠MAD=∠MDA,
∴∠MAC+∠DAC=∠B+∠BAD,
∵∠BAD=∠CAD,
∴∠MAC=∠B,
∵∠AMC=∠AMB,
∴△AMC∽△BMA,
∴=,
∴AM2=MCMB,
∵ME=MA,
∴ME2=MCMB.
(2)证明:∵△MAC∽△BMA,
∴=,
∴=,
∴=,
∵AB2=BDBE,
∴=,
∵∠B=∠B,
∴△BAD∽△BEA,
∴∠BAD=∠E,
∵∠AMB=∠E+∠MAE=2∠E,∠BAC=2∠BAD,
∴∠BAC=∠AMB,∵∠B=∠B,
∴△BAC∽△BMA
∴=,
∴AB2=BCBM,
∴==.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=3,D为BC的中点,动点E,F分别在AB,AC上,分别过点EG∥AD∥FH,交BC于点G、H,若EF∥BC,则EF+EG+FH的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠BAD═70°,AB的垂直平分线交对角线AC于点F.垂足为E,连接DF,则∠CDF等于( )
A.60°B.65°C.70°D.75°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.
(1)设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)
(2)每件童装降价多少元时,平均每天赢利1200元.
(3)要想平均每天赢利2000元,可能吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”如图所示,△ABC中AF、BE是中线,且AF⊥BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果∠ABE=30°,AB=6,那么此时AC的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数的图象与性质.
小东根据学习函数的经验,对函数的图象与性质进行了探究.
下面是小东的探究过程,请补充完成:
(1)化简函数解析式,当时,___________,当时____________;
(2)根据(1)中的结果,请在所给坐标系中画出函数的图象;备用图
(3)结合画出的函数图象,解决问题:若关于的方程只有一个实数根,直接写出实数的取值范围:___________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x与双曲线y=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为( )
A.(1,0)
B.(1,0)或(﹣1,0)
C.(2,0)或(0,﹣2)
D.(﹣2,1)或(2,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额超过30元的概率为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点B在x轴的正半轴上,OB=,AB⊥OB,∠AOB=30°.把△ABO绕点O逆时针旋转150°后得到△A1B1O,则点A的对应点A1的坐标为___.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com