精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC和△ADE都是等腰直角三角形,CEBD相交于点MBDAC于点N.

1)证明:BDCE

2)证明:BDCE

【答案】1)证明见解析;(2)证明见解析.

【解析】

1)要证明BDCE,只要证明△ABD≌△ACE即可,两三角形中,已知的条件有ADAEABAC,那么只要再得出两对应边的夹角相等即可得出三角形全等的结论.我们发现∠BAD和∠EAC都是90°加上一个

CAD,因此∠CAE=∠BAD.由此构成了两三角形全等中的(SAS)因此两三角形全等.

2)要证BDCE,只要证明∠BMC是个直角就行了.由(1)得出的全等三角形我们可知:

ABN=∠ACE,三角形ABC中,∠ABN+CBN+BCN90°,根据上面的相等角,我们可得出∠ACE+CBN+BCN90°,即∠ABN+ACE90°,因此∠BMC就是直角.

证明:(1)∵∠BAC=∠DAE90°

∴∠BAC+CAD=∠DAE+CAD

即∠CAE=∠BAD

在△ABD和△ACE

∴△ABD≌△ACESAS

BDCE

2)∵△ABD≌△ACE

∴∠ABN=∠ACE

∵∠ANB=∠CND

∴∠ABN+ANB=∠CND+NCE90°

∴∠CMN90°

BDCE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:

(1)每千克核桃应降价多少元?

(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,点,直线轴于点

(1)求直线的表达式和点的坐标;

(2)在直线上有一点,使得的面积为4,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,点EFBD上,且DF=BE=1,四边形AECF的面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为6,面积是36,腰AC的垂直平分线EF分别交ACAB边于EF点.若点DBC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】意大利文艺复兴时期的著名画家达芬奇利用两张一样的纸片拼出不一样的空洞,从而巧妙的证明了勾股定理.小明用两张全等的的纸片①和②拼成如图1所示的图形,中间的六边形由两个正方形和两个全等的直角三角形组成.已知六边形的面积为28.小明将纸片②翻转后拼成如图2所示的图形,其中,则四边形的面积为(

A.16B.20C.22D.24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】晚饭后,小林和小京在社区广场散步,两人在灯下沿直线NQ移动,如图,当小林正好站在广场的A点(距N5块地砖长)时,其影长AD恰好为1块地砖长;当小京正好站在广场的B点(距N9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小林的身高AC1.6米,MNNQACNQBENQ.请你根据以上信息,求出小京身高BE的长.(结果精确到0.01米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交边于点.若点边的中点,点为线段上一动点,则周长的最小值为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,在直线上取一点,使为等腰三角形,则符合条件的点共有(

A.B.C.D.

查看答案和解析>>

同步练习册答案